A93775.避免K分割
普及/提高-
官方
通过率:0%
时间限制:1.00s
内存限制:128MB
题目描述
给定一个长度为 N 的整数序列 A=(A1,A2,…,AN) 和一个整数 K。我们将 A 切分成若干个连续的子序列(等价于在相邻位置之间选择是否放置分割线,共有 2N−1 种切法)。
请你统计:有多少种切分方式,使得切分后的任意一个子序列的元素和都不等于 K。将答案对 998244353 取模后输出。
输入格式
第一行:两个整数 N 与 K
第二行:A1 A2 … AN
输出格式
输出格式
输出一个整数,表示满足条件的切分方式数对 998244353 取模的结果。
输入输出样例
输入#1
3 3 1 2 3
输出#1
2
说明/提示
1≤N≤2×105
−1015≤K≤1015
−109≤Ai≤109
对于样例:
所有切分方式中,满足“每一段和都 =3”的有两种:
(1),(2,3):各段和为 1 与 5;
(1,2,3):整段和为 6。
像 (1,2),(3) 因为存在和等于 3,因此不计入。