A85811.「NOIP2013」华容道
省选/NOI-
通过率:0%
时间限制:1.00s
内存限制:128MB
题目描述
小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次。于是,他想到用编程来完成华容道:给定一种局面,华容道是否根本就无法完成,如果能完成,最少需要多少时间。
小 B 玩的华容道与经典的华容道游戏略有不同,游戏规则是这样的:
- 在一个 n×m 棋盘上有 n×m 个格子,其中有且只有一个格子是空白的,其余 n×m−1 个格子上每个格子上有一个棋子,每个棋子的大小都是 1×1 的;
- 有些棋子是固定的,有些棋子则是可以移动的;
- 任何与空白的格子相邻(有公共的边)的格子上的棋子都可以移动到空白格子上。游戏的目的是把某个指定位置可以活动的棋子移动到目标位置。
给定一个棋盘,游戏可以玩 q 次,当然,每次棋盘上固定的格子是不会变的,但是棋盘上空白的格子的初始位置、指定的可移动的棋子的初始位置和目标位置却可能不同。第 i 次玩的时候,空白的格子在第 EXi 行第 EYi 列,指定的可移动棋子的初始位置为第 SXi 行第 SYi 列,目标位置为第 TXi 行第 TYi 列。
假设小 B 每秒钟能进行一次移动棋子的操作,而其他操作的时间都可以忽略不计。请你告诉小 B 每一次游戏所需要的最少时间,或者告诉他不可能完成游戏。
输入格式
第一行有 3 个整数,每两个整数之间用一个空格隔开,依次表示 n、m 和 q;
接下来的 n 行描述一个 n×m 的棋盘,每行有 m 个整数,每两个整数之间用一个空格隔开,每个整数描述棋盘上一个格子的状态,0 表示该格子上的棋子是固定的,1 表示该格子上的棋子可以移动或者该格子是空白的。
接下来的 q 行,每行包含 6 个整数依次是 EXi、EYi、SXi、SYi、TXi、TYi,每两个整数之间用一个空格隔开,表示每次游戏空白格子的位置,指定棋子的初始位置和目标位置。
输出格式
输出有 q 行,每行包含 1 个整数,表示每次游戏所需要的最少时间,如果某次游戏无法完成目标则输出 −1。
输入输出样例
输入#1
3 4 2 0 1 1 1 0 1 1 0 0 1 0 0 3 2 1 2 2 2 1 2 2 2 3 2
输出#1
2 -1
说明/提示
对于 30% 的数据,1≤n,m≤10,q=1;
对于 60% 的数据,1≤n,m≤30,q≤10;
对于 100% 的数据,1≤n,m≤30,q≤500,(EX,EY)=(SX,SY)。