A30081.神经网络

普及/提高-

NOIP提高组

通过率:0%

时间限制:1.00s

内存限制:128MB

题目描述

人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别、函数逼近及贷款风险评估等诸多领域有广泛的应用。对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性。

在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经

元之间至多有一条边相连,下图是一个神经元的例子:

图中,X1—X3是信息输入渠道,Y1—Y2是

输入格式

每组输入第一行是两个整数n(1≤n≤20)和p。接下来n行,每行两个整数,第i+1行是神经元i最初状态和其阈值(Ui),非输入层的神经元开始时状态必然为0。再下面P行,每行由两个整数i,j及一个整数Wij,表示连接神经元i、j的边权值为Wij。

输出格式

每组输出包含若干行,每行有两个整数,分别对应一个神经元的编号,及其最后的状态,两个整数间以空格分隔。仅输出最后状态非零的输出层神经元状态,并且按照编号由小到大顺序输出!
若输出层的神经元最后状态均为 0,则输出 NULL。

输入输出样例

  • 输入#1

    5 6
    1 0
    1 0
    0 1
    0 1
    0 1
    1 3 1
    1 4 1
    1 5 1
    2 3 1
    2 4 1
    2 5 1

    输出#1

    3 1
    4 1
    5 1
首页