A21389.亚瑟王
省选/NOI-
通过率:0%
时间限制:1.00s
内存限制:128MB
题目描述
小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。
作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验。
本题中我们将考虑游戏的一个简化版模型。 玩家有一套卡牌,共 n 张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后将卡牌按从前往后依次编号为 1−n。本题中,顺序已经确定,即为输入的顺序。每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对敌方造成 di 点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因素以及小 K 非洲血统的考虑,pi 不会为 0,也不会为 1,即 0<pi<1。 一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌:
- 如果这张卡牌在这一局游戏中已经发动过技能,则
1.1. 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌); 否则(是最后一张),结束这一轮游戏。
- 否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张
2.1. 将其以 pi 的概率发动技能。
2.2. 如果技能发动,则对敌方造成 di 点伤害,并结束这一轮。
2.3. 如果这张卡牌已经是最后一张(即 i 等于 n),则结束这一轮;否则,考虑下一张卡牌。
请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。
输入格式
输入文件的第一行包含一个整数 T,代表测试数据组数。
接下来一共 T 组数据。
每组数据的第一行包含两个用空格分开的整数 n 和 r,分别代表卡牌的张数和游戏的轮数。
接下来 n 行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第i 行的两个数为 pi 和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动造成的伤害(整数)。保证 pi 最多包含 4 位小数,且为一个合法的概率。
输出格式
对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过 10−8 时——即 a∣a−o∣≤10−8 时(其中 a 是标准答案, o 是输出),你的输出才会被判为正确。建议输出 10 位小数。
输入输出样例
输入#1
1 3 2 0.5000 2 0.3000 3 0.9000 1
输出#1
3.2660250000
说明/提示
一共有 13 种可能的情况:
- 第一轮中,第 1 张卡牌发动技能;第二轮中,第 2 张卡牌发动技能;
概率为 0.15,伤害为 5。
- 第一轮中,第 1 张卡牌发动技能;第二轮中,第 3 张卡牌发动技能;
概率为 0.315,伤害为 3。
- 第一轮中,第 1 张卡牌发动技能;第二轮不发动技能;
概率为 0.035,伤害为 2。
- 第一轮中,第 2 张卡牌发动技能;第二轮中,第 1 张卡牌发动技能;
概率为 0.075,伤害为 5。
- 第一轮中,第 2 张卡牌发动技能;第二轮中,第 3 张卡牌发动技能;
概率为 0.0675,伤害为 4。
- 第一轮中,第 2 张卡牌发动技能;第二轮不发动技能;
概率为 0.0075,伤害为 3。
- 第一轮中,第 3 张卡牌发动技能;第二轮中,第 1 张卡牌发动技能;
概率为 0.1575,伤害为 3。
- 第一轮中,第 3 张卡牌发动技能;第二轮中,第 2 张卡牌发动技能;
概率为 0.04725,伤害为 4。
- 第一轮中,第 3 张卡牌发动技能;第二轮不发动技能;
概率为 0.11025,伤害为 1。
- 第一轮不发动技能;第二轮中,第 1 张卡牌发动技能;
概率为 0.0175,伤害为 2。
- 第一轮不发动技能;第二轮中,第 2 张卡牌发动技能;
概率为 0.00525,伤害为 3。
- 第一轮不发动技能;第二轮中,第 3 张卡牌发动技能;
概率为 0.011025,伤害为 1。
- 第一轮不发动技能;第二轮亦不发动技能;
概率为 0.001225,伤害为 0。
造成伤害的期望值为概率与对应伤害乘积之和,为 3.266025。
对于所有测试数据, 1≤T≤444,1≤n≤220,0≤r≤132,0<pi<1,0≤di≤1000。
除非备注中有特殊说明,数据中 pi 与 di 均为随机生成。
请注意可能存在的实数精度问题,并采取适当措施。
本题使用 special_judge
。