CF1855B.Longest Divisors Interval

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Given a positive integer nn , find the maximum size of an interval [l,r][l, r] of positive integers such that, for every ii in the interval (i.e., lirl \leq i \leq r ), nn is a multiple of ii .

Given two integers lrl\le r , the size of the interval [l,r][l, r] is rl+1r-l+1 (i.e., it coincides with the number of integers belonging to the interval).

输入格式

The first line contains a single integer tt ( 1t1041 \le t \le 10^4 ) — the number of test cases.

The only line of the description of each test case contains one integer nn ( 1n10181 \leq n \leq 10^{18} ).

输出格式

For each test case, print a single integer: the maximum size of a valid interval.

输入输出样例

  • 输入#1

    10
    1
    40
    990990
    4204474560
    169958913706572972
    365988220345828080
    387701719537826430
    620196883578129853
    864802341280805662
    1000000000000000000

    输出#1

    1
    2
    3
    6
    4
    22
    3
    1
    2
    2

说明/提示

In the first test case, a valid interval with maximum size is [1,1][1, 1] (it's valid because n=1n = 1 is a multiple of 11 ) and its size is 11 .

In the second test case, a valid interval with maximum size is [4,5][4, 5] (it's valid because n=40n = 40 is a multiple of 44 and 55 ) and its size is 22 .

In the third test case, a valid interval with maximum size is [9,11][9, 11] .

In the fourth test case, a valid interval with maximum size is [8,13][8, 13] .

In the seventh test case, a valid interval with maximum size is [327869,327871][327869, 327871] .

首页