CF1787C.Remove the Bracket
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
RSJ has a sequence a of n integers a1,a2,…,an and an integer s . For each of a2,a3,…,an−1 , he chose a pair of non-negative integers xi and yi such that xi+yi=ai and (xi−s)⋅(yi−s)≥0 .
Now he is interested in the value $$$$F = a_1 \cdot x_2+y_2 \cdot x_3+y_3 \cdot x_4 + \ldots + y_{n - 2} \cdot x_{n-1}+y_{n-1} \cdot a_n. $$
Please help him find the minimum possible value F he can get by choosing x_i and y_i$$ optimally. It can be shown that there is always at least one valid way to choose them.
输入格式
Each test contains multiple test cases. The first line contains an integer t ( 1≤t≤104 ) — the number of test cases.
The first line of each test case contains two integers n , s ( 3≤n≤2⋅105 ; 0≤s≤2⋅105 ).
The second line contains n integers a1,a2,…,an ( 0≤ai≤2⋅105 ).
It is guaranteed that the sum of n does not exceed 2⋅105 .
输出格式
For each test case, print the minimum possible value of F .
输入输出样例
输入#1
10 5 0 2 0 1 3 4 5 1 5 3 4 3 5 7 2 7 6 5 4 3 2 1 5 1 1 2 3 4 5 5 2 1 2 3 4 5 4 0 0 1 1 1 5 5 4 3 5 6 4 4 1 0 2 1 0 3 99999 200000 200000 200000 6 8139 7976 129785 12984 78561 173685 15480
输出#1
0 18 32 11 14 0 16 0 40000000000 2700826806
说明/提示
In the first test case, 2⋅0+0⋅1+0⋅3+0⋅4=0 .
In the second test case, 5⋅1+2⋅2+2⋅2+1⋅5=18 .