CF1787I.Treasure Hunt

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Define the beauty value of a sequence b1,b2,,bcb_1,b_2,\ldots,b_c as the maximum value of i=1qbi+i=stbi\sum\limits_{i=1}^{q}b_i + \sum\limits_{i=s}^{t}b_i , where qq , ss , tt are all integers and s>qs > q or tqt\leq q . Note that bi=0b_i = 0 when i<1i<1 or i>ci>c , i=stbi=0\sum\limits_{i=s}^{t}b_i = 0 when s>ts>t .

For example, when b=[1,2,3]b = [-1,-2,-3] , we may have q=0q = 0 , s=3s = 3 , t=2t = 2 so the beauty value is 0+0=00 + 0 = 0 . And when b=[1,2,3]b = [-1,2,-3] , we have q=s=t=2q = s = t = 2 so the beauty value is 1+2=31 + 2 = 3 .

You are given a sequence aa of length nn , determine the sum of the beauty value of all non-empty subsegments al,al+1,,ara_l,a_{l+1},\ldots,a_r ( 1lrn1\leq l\leq r\leq n ) of the sequence aa .

Print the answer modulo 998244353998\,244\,353 .

输入格式

Each test contains multiple test cases. The first line contains an integer TT ( 1T1041 \le T \le 10^4 ) — the number of test cases.

The first line contains an integer nn ( 1n1061\le n\le 10^6 ) — the length of aa .

The second line contains nn integers a1,a2,,ana_1,a_2,\ldots,a_n ( 106ai106-10^6 \leq a_i \leq 10^6 ) — the given sequence.

It's guaranteed that the sum of nn does not exceed 10610^6 .

输出格式

For each test case, print a line containing a single integer — the answer modulo 998244353998\,244\,353 .

输入输出样例

  • 输入#1

    4
    7
    80 59 100 -52 -86 -62 75
    8
    -48 -14 -26 43 -41 34 13 55
    1
    74
    20
    56 -60 62 13 88 -48 64 36 -10 19 94 25 -69 88 87 79 -70 74 -26 59

    输出#1

    5924
    2548
    148
    98887

说明/提示

In the second test case, for the subsequence [26,43,41,34,13][-26,43,-41,34,13] , when q=5q=5 , s=2s=2 , t=5t=5 , i=1qbi+i=stbi=23+49=72\sum\limits_{i=1}^{q}b_i + \sum\limits_{i=s}^{t}b_i = 23 + 49 = 72 .

In the third test case, there is only one non-empty consecutive subsequence [74][74] . When q=1q=1 , s=1s=1 , t=1t=1 , i=1qbi+i=stbi=148\sum\limits_{i=1}^{q}b_i + \sum\limits_{i=s}^{t}b_i = 148 .

首页