CF1768F.Wonderful Jump

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an array of positive integers a1,a2,,ana_1,a_2,\ldots,a_n of length nn .

In one operation you can jump from index ii to index jj ( 1ijn1 \le i \le j \le n ) by paying min(ai,ai+1,,aj)(ji)2\min(a_i, a_{i + 1}, \ldots, a_j) \cdot (j - i)^2 eris.

For all kk from 11 to nn , find the minimum number of eris needed to get from index 11 to index kk .

输入格式

The first line contains a single integer nn ( 2n41052 \le n \le 4 \cdot 10^5 ).

The second line contains nn integers a1,a2,ana_1,a_2,\ldots a_n ( 1ain1 \le a_i \le n ).

输出格式

Output nn integers — the kk -th integer is the minimum number of eris needed to reach index kk if you start from index 11 .

输入输出样例

  • 输入#1

    3
    2 1 3

    输出#1

    0 1 2
  • 输入#2

    6
    1 4 1 6 3 2

    输出#2

    0 1 2 3 6 8
  • 输入#3

    2
    1 2

    输出#3

    0 1
  • 输入#4

    4
    1 4 4 4

    输出#4

    0 1 4 8

说明/提示

In the first example:

  • From 11 to 11 : the cost is 00 ,
  • From 11 to 22 : 121 \rightarrow 2 — the cost is min(2,1)(21)2=1\min(2, 1) \cdot (2 - 1) ^ 2=1 ,
  • From 11 to 33 : 1231 \rightarrow 2 \rightarrow 3 — the cost is min(2,1)(21)2+min(1,3)(32)2=1+1=2\min(2, 1) \cdot (2 - 1) ^ 2 + \min(1, 3) \cdot (3 - 2) ^ 2 = 1 + 1 = 2 .

In the fourth example from 11 to 44 : 1341 \rightarrow 3 \rightarrow 4 — the cost is min(1,4,4)(31)2+min(4,4)(43)2=4+4=8\min(1, 4, 4) \cdot (3 - 1) ^ 2 + \min(4, 4) \cdot (4 - 3) ^ 2 = 4 + 4 = 8 .

首页