CF1770C.Koxia and Number Theory

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Joi has an array aa of nn positive integers. Koxia wants you to determine whether there exists a positive integer x>0x > 0 such that gcd(ai+x,aj+x)=1\gcd(a_i+x,a_j+x)=1 for all 1i<jn1 \leq i < j \leq n .

Here gcd(y,z)\gcd(y, z) denotes the greatest common divisor (GCD) of integers yy and zz .

输入格式

Each test consists of multiple test cases. The first line contains a single integer tt ( 1t1001 \le t \le 100 ) — the number of test cases. The description of test cases follows.

The first line of each test case contains an integer nn ( 2n1002 \leq n \leq 100 ) — the size of the array.

The second line of each test case contains nn integers a1,a2,,ana_1, a_2, \dots, a_n ( 1ai10181 \leq a_i \leq {10}^{18} ).

It is guaranteed that the sum of nn over all test cases does not exceed 10001000 .

输出格式

For each test case, output "YES" (without quotes) if there exists a positive integer xx such that gcd(ai+x,aj+x)=1\gcd(a_i+x,a_j+x)=1 for all 1i<jn1 \leq i < j \leq n , and "NO" (without quotes) otherwise.

You can output the answer in any case (upper or lower). For example, the strings "yEs", "yes", "Yes", and "YES" will be recognized as positive responses.

输入输出样例

  • 输入#1

    2
    3
    5 7 10
    3
    3 3 4

    输出#1

    YES
    NO

说明/提示

In the first test case, we can set x=4x = 4 . This is valid because:

  • When i=1i=1 and j=2j=2 , gcd(ai+x,aj+x)=gcd(5+4,7+4)=gcd(9,11)=1\gcd(a_i+x,a_j+x)=\gcd(5+4,7+4)=\gcd(9,11)=1 .
  • When i=1i=1 and j=3j=3 , gcd(ai+x,aj+x)=gcd(5+4,10+4)=gcd(9,14)=1\gcd(a_i+x,a_j+x)=\gcd(5+4,10+4)=\gcd(9,14)=1 .
  • When i=2i=2 and j=3j=3 , gcd(ai+x,aj+x)=gcd(7+4,10+4)=gcd(11,14)=1\gcd(a_i+x,a_j+x)=\gcd(7+4,10+4)=\gcd(11,14)=1 .

In the second test case, any choice of xx makes gcd(a1+x,a2+x)=gcd(3+x,3+x)=3+x\gcd(a_1 + x, a_2 + x) = \gcd(3+x,3+x)=3+x . Therefore, no such xx exists.

首页