CF1770C.Koxia and Number Theory
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
Joi has an array a of n positive integers. Koxia wants you to determine whether there exists a positive integer x>0 such that gcd(ai+x,aj+x)=1 for all 1≤i<j≤n .
Here gcd(y,z) denotes the greatest common divisor (GCD) of integers y and z .
输入格式
Each test consists of multiple test cases. The first line contains a single integer t ( 1≤t≤100 ) — the number of test cases. The description of test cases follows.
The first line of each test case contains an integer n ( 2≤n≤100 ) — the size of the array.
The second line of each test case contains n integers a1,a2,…,an ( 1≤ai≤1018 ).
It is guaranteed that the sum of n over all test cases does not exceed 1000 .
输出格式
For each test case, output "YES" (without quotes) if there exists a positive integer x such that gcd(ai+x,aj+x)=1 for all 1≤i<j≤n , and "NO" (without quotes) otherwise.
You can output the answer in any case (upper or lower). For example, the strings "yEs", "yes", "Yes", and "YES" will be recognized as positive responses.
输入输出样例
输入#1
2 3 5 7 10 3 3 3 4
输出#1
YES NO
说明/提示
In the first test case, we can set x=4 . This is valid because:
- When i=1 and j=2 , gcd(ai+x,aj+x)=gcd(5+4,7+4)=gcd(9,11)=1 .
- When i=1 and j=3 , gcd(ai+x,aj+x)=gcd(5+4,10+4)=gcd(9,14)=1 .
- When i=2 and j=3 , gcd(ai+x,aj+x)=gcd(7+4,10+4)=gcd(11,14)=1 .
In the second test case, any choice of x makes gcd(a1+x,a2+x)=gcd(3+x,3+x)=3+x . Therefore, no such x exists.