CF1747A.Two Groups

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an array aa consisting of nn integers. You want to distribute these nn integers into two groups s1s_1 and s2s_2 (groups can be empty) so that the following conditions are satisfied:

  • For each ii (1in)(1 \leq i \leq n) , aia_i goes into exactly one group.
  • The value sum(s1)sum(s2)|sum(s_1)| - |sum(s_2)| is the maximum possible among all such ways to distribute the integers.Here sum(s1)sum(s_1) denotes the sum of the numbers in the group s1s_1 , and sum(s2)sum(s_2) denotes the sum of the numbers in the group s2s_2 .

Determine the maximum possible value of sum(s1)sum(s2)|sum(s_1)| - |sum(s_2)| .

输入格式

The input consists of multiple test cases. The first line contains a single integer tt (1t2104)(1 \leq t \leq 2 \cdot 10^4) — the number of test cases. The description of the test cases follows.

The first line of each test case contains a single integer nn (1n105)(1 \leq n \leq 10^5) — the length of the array aa .

The second line of each test case contains nn integers a1,a2ana_1,a_2 \ldots a_n (109ai109)(-10^9 \leq a_i \leq 10^9) — elements of the array aa .

It is guaranteed that the sum of nn over all test cases does not exceed 21052\cdot 10^5 .

输出格式

For each test case, output a single integer — the maximum possible value of sum(s1)sum(s2)|sum(s_1)| - |sum(s_2)| .

输入输出样例

  • 输入#1

    4
    2
    10 -10
    4
    -2 -1 11 0
    3
    2 3 2
    5
    -9 2 0 0 -4

    输出#1

    0
    8
    7
    11

说明/提示

In the first testcase, we can distribute as s1={10}s_1 = \{10\} , s2={10}s_2 = \{-10\} . Then the value will be 1010=0|10| - |-10| = 0 .

In the second testcase, we can distribute as s1={0,11,1}s_1 = \{0, 11, -1\} , s2={2}s_2 = \{-2\} . Then the value will be 0+1112=102=8|0 + 11 - 1| - |-2| = 10 - 2 = 8 .

In the third testcase, we can distribute as s1={2,3,2}s_1 = \{2, 3, 2\} , s2={}s_2 = \{\} . Then the value will be 2+3+20=7|2 + 3 + 2| - |0| = 7 .

In the fourth testcase, we can distribute as s1={9,4,0}s_1 = \{-9, -4, 0\} , s2={2,0}s_2 = \{2, 0\} . Then the value will be 94+02+0=132=11|-9 - 4 + 0| - |2 + 0| = 13 - 2 = 11 .

首页