CF1753B.Factorial Divisibility

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an integer xx and an array of integers a1,a2,,ana_1, a_2, \ldots, a_n . You have to determine if the number a1!+a2!++an!a_1! + a_2! + \ldots + a_n! is divisible by x!x! .

Here k!k! is a factorial of kk — the product of all positive integers less than or equal to kk . For example, 3!=123=63! = 1 \cdot 2 \cdot 3 = 6 , and 5!=12345=1205! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120 .

输入格式

The first line contains two integers nn and xx ( 1n5000001 \le n \le 500\,000 , 1x5000001 \le x \le 500\,000 ).

The second line contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n ( 1aix1 \le a_i \le x ) — elements of given array.

输出格式

In the only line print "Yes" (without quotes) if a1!+a2!++an!a_1! + a_2! + \ldots + a_n! is divisible by x!x! , and "No" (without quotes) otherwise.

输入输出样例

  • 输入#1

    6 4
    3 2 2 2 3 3

    输出#1

    Yes
  • 输入#2

    8 3
    3 2 2 2 2 2 1 1

    输出#2

    Yes
  • 输入#3

    7 8
    7 7 7 7 7 7 7

    输出#3

    No
  • 输入#4

    10 5
    4 3 2 1 4 3 2 4 3 4

    输出#4

    No
  • 输入#5

    2 500000
    499999 499999

    输出#5

    No

说明/提示

In the first example 3!+2!+2!+2!+3!+3!=6+2+2+2+6+6=243! + 2! + 2! + 2! + 3! + 3! = 6 + 2 + 2 + 2 + 6 + 6 = 24 . Number 2424 is divisible by 4!=244! = 24 .

In the second example 3!+2!+2!+2!+2!+2!+1!+1!=183! + 2! + 2! + 2! + 2! + 2! + 1! + 1! = 18 , is divisible by 3!=63! = 6 .

In the third example 7!+7!+7!+7!+7!+7!+7!=77!7! + 7! + 7! + 7! + 7! + 7! + 7! = 7 \cdot 7! . It is easy to prove that this number is not divisible by 8!8! .

首页