CF1753B.Factorial Divisibility
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
You are given an integer x and an array of integers a1,a2,…,an . You have to determine if the number a1!+a2!+…+an! is divisible by x! .
Here k! is a factorial of k — the product of all positive integers less than or equal to k . For example, 3!=1⋅2⋅3=6 , and 5!=1⋅2⋅3⋅4⋅5=120 .
输入格式
The first line contains two integers n and x ( 1≤n≤500000 , 1≤x≤500000 ).
The second line contains n integers a1,a2,…,an ( 1≤ai≤x ) — elements of given array.
输出格式
In the only line print "Yes" (without quotes) if a1!+a2!+…+an! is divisible by x! , and "No" (without quotes) otherwise.
输入输出样例
输入#1
6 4 3 2 2 2 3 3
输出#1
Yes
输入#2
8 3 3 2 2 2 2 2 1 1
输出#2
Yes
输入#3
7 8 7 7 7 7 7 7 7
输出#3
No
输入#4
10 5 4 3 2 1 4 3 2 4 3 4
输出#4
No
输入#5
2 500000 499999 499999
输出#5
No
说明/提示
In the first example 3!+2!+2!+2!+3!+3!=6+2+2+2+6+6=24 . Number 24 is divisible by 4!=24 .
In the second example 3!+2!+2!+2!+2!+2!+1!+1!=18 , is divisible by 3!=6 .
In the third example 7!+7!+7!+7!+7!+7!+7!=7⋅7! . It is easy to prove that this number is not divisible by 8! .