CF1758B.XOR = Average
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
You are given an integer n . Find a sequence of n integers a1,a2,…,an such that 1≤ai≤109 for all i and $$$$a_1 \oplus a_2 \oplus \dots \oplus a_n = \frac{a_1 + a_2 + \dots + a_n}{n}, $$ where oplus$$ represents the bitwise XOR.
It can be proven that there exists a sequence of integers that satisfies all the conditions above.
输入格式
The first line of input contains t ( 1≤t≤104 ) — the number of test cases.
The first and only line of each test case contains one integer n ( 1≤n≤105 ) — the length of the sequence you have to find.
The sum of n over all test cases does not exceed 105 .
输出格式
For each test case, output n space-separated integers a1,a2,…,an satisfying the conditions in the statement.
If there are several possible answers, you can output any of them.
输入输出样例
输入#1
3 1 4 3
输出#1
69 13 2 8 1 7 7 7
说明/提示
In the first test case, 69=169=69 .
In the second test case, 13⊕2⊕8⊕1=413+2+8+1=6 .