CF1758B.XOR = Average

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an integer nn . Find a sequence of nn integers a1,a2,,ana_1, a_2, \dots, a_n such that 1ai1091 \leq a_i \leq 10^9 for all ii and $$$$a_1 \oplus a_2 \oplus \dots \oplus a_n = \frac{a_1 + a_2 + \dots + a_n}{n}, $$ where oplus\\oplus$$ represents the bitwise XOR.

It can be proven that there exists a sequence of integers that satisfies all the conditions above.

输入格式

The first line of input contains tt ( 1t1041 \leq t \leq 10^4 ) — the number of test cases.

The first and only line of each test case contains one integer nn ( 1n1051 \leq n \leq 10^5 ) — the length of the sequence you have to find.

The sum of nn over all test cases does not exceed 10510^5 .

输出格式

For each test case, output nn space-separated integers a1,a2,,ana_1, a_2, \dots, a_n satisfying the conditions in the statement.

If there are several possible answers, you can output any of them.

输入输出样例

  • 输入#1

    3
    1
    4
    3

    输出#1

    69
    13 2 8 1
    7 7 7

说明/提示

In the first test case, 69=691=6969 = \frac{69}{1} = 69 .

In the second test case, 13281=13+2+8+14=613 \oplus 2 \oplus 8 \oplus 1 = \frac{13 + 2 + 8 + 1}{4} = 6 .

首页