CF1758C.Almost All Multiples

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Given two integers nn and xx , a permutation ^{\dagger} pp of length nn is called funny if pip_i is a multiple of ii for all 1in11 \leq i \leq n - 1 , pn=1p_n = 1 , and p1=xp_1 = x .

Find the lexicographically minimal ^{\ddagger} funny permutation, or report that no such permutation exists.

^{\dagger} A permutation of length nn is an array consisting of each of the integers from 11 to nn exactly once.

^{\ddagger} Let aa and bb be permutations of length nn . Then aa is lexicographically smaller than bb if in the first position ii where aa and bb differ, ai<bia_i < b_i . A permutation is lexicographically minimal if it is lexicographically smaller than all other permutations.

输入格式

The input consists of multiple test cases. The first line contains an integer tt ( 1t1041 \leq t \leq 10^4 ) — the number of test cases. The description of the test cases follows.

The only line of each test case contains two integers nn and xx ( 2n21052 \leq n \leq 2 \cdot 10^5 ; 1<xn1 < x \leq n ).

The sum of nn across all test cases does not exceed 21052 \cdot 10^5 .

输出格式

For each test case, if the answer exists, output nn distinct integers p1,p2,,pnp_1, p_2, \dots, p_n ( 1pin1 \leq p_i \leq n ) — the lexicographically minimal funny permutation pp . Otherwise, output 1-1 .

输入输出样例

  • 输入#1

    3
    3 3
    4 2
    5 4

    输出#1

    3 2 1 
    2 4 3 1 
    -1

说明/提示

In the first test case, the permutation [3,2,1][3,2,1] satisfies all the conditions: p1=3p_1=3 , p3=1p_3=1 , and:

  • p1=3p_1=3 is a multiple of 11 .
  • p2=2p_2=2 is a multiple of 22 .

In the second test case, the permutation [2,4,3,1][2,4,3,1] satisfies all the conditions: p1=2p_1=2 , p4=1p_4=1 , and:

  • p1=2p_1=2 is a multiple of 11 .
  • p2=4p_2=4 is a multiple of 22 .
  • p3=3p_3=3 is a multiple of 33 .

We can show that these permutations are lexicographically minimal.

No such permutations exist in the third test case.

首页