CF1759G.Restore the Permutation

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

A sequence of nn numbers is called permutation if it contains all numbers from 11 to nn exactly once. For example, the sequences [ 3,1,4,23, 1, 4, 2 ], [ 11 ] and [ 2,12,1 ] are permutations, but [ 1,2,11,2,1 ], [ 0,10,1 ] and [ 1,3,41,3,4 ] — are not.

For a permutation pp of even length nn you can make an array bb of length n2\frac{n}{2} such that:

  • bi=max(p2i1,p2i)b_i = \max(p_{2i - 1}, p_{2i}) for 1in21 \le i \le \frac{n}{2}

For example, if pp = [ 2,4,3,1,5,62, 4, 3, 1, 5, 6 ], then:

  • b1=max(p1,p2)=max(2,4)=4b_1 = \max(p_1, p_2) = \max(2, 4) = 4
  • b2=max(p3,p4)=max(3,1)=3b_2 = \max(p_3, p_4) = \max(3,1)=3
  • b3=max(p5,p6)=max(5,6)=6b_3 = \max(p_5, p_6) = \max(5,6) = 6

As a result, we made bb = [4,3,6][4, 3, 6] .For a given array bb , find the lexicographically minimal permutation pp such that you can make the given array bb from it.

If bb = [ 4,3,64,3,6 ], then the lexicographically minimal permutation from which it can be made is pp = [ 1,4,2,3,5,61,4,2,3,5,6 ], since:

  • b1=max(p1,p2)=max(1,4)=4b_1 = \max(p_1, p_2) = \max(1, 4) = 4
  • b2=max(p3,p4)=max(2,3)=3b_2 = \max(p_3, p_4) = \max(2, 3) = 3
  • b3=max(p5,p6)=max(5,6)=6b_3 = \max(p_5, p_6) = \max(5, 6) = 6

A permutation x1,x2,,xnx_1, x_2, \dots, x_n is lexicographically smaller than a permutation y1,y2,yny_1, y_2 \dots, y_n if and only if there exists such ii ( 1in1 \le i \le n ) that x1=y1,x2=y2,,xi1=yi1x_1=y_1, x_2=y_2, \dots, x_{i-1}=y_{i-1} and xi<yix_i<y_i .

输入格式

The first line of input data contains a single integer tt ( 1t1041 \le t \le 10^4 ) — the number of test cases.

The description of the test cases follows.

The first line of each test case contains one even integer nn ( 2n21052 \le n \le 2 \cdot 10^5 ).

The second line of each test case contains exactly n2\frac{n}{2} integers bib_i ( 1bin1 \le b_i \le n ) — elements of array bb .

It is guaranteed that the sum of nn values over all test cases does not exceed 21052 \cdot 10^5 .

输出格式

For each test case, print on a separate line:

  • lexicographically minimal permutation pp such that you can make an array bb from it;
  • or a number -1 if the permutation you are looking for does not exist.

输入输出样例

  • 输入#1

    6
    6
    4 3 6
    4
    2 4
    8
    8 7 2 3
    6
    6 4 2
    4
    4 4
    8
    8 7 4 5

    输出#1

    1 4 2 3 5 6 
    1 2 3 4 
    -1
    5 6 3 4 1 2 
    -1
    1 8 6 7 2 4 3 5

说明/提示

The first test case is parsed in the problem statement.

首页