CF1761D.Carry Bit
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
Let f(x,y) be the number of carries of x+y in binary (i. e. f(x,y)=g(x)+g(y)−g(x+y) , where g(x) is the number of ones in the binary representation of x ).
Given two integers n and k , find the number of ordered pairs (a,b) such that 0≤a,b<2n , and f(a,b) equals k . Note that for a=b , (a,b) and (b,a) are considered as two different pairs.
As this number may be large, output it modulo 109+7 .
输入格式
The only line of each test contains two integers n and k ( 0≤k<n≤106 ).
输出格式
Output a single integer — the answer modulo 109+7 .
输入输出样例
输入#1
3 1
输出#1
15
输入#2
3 0
输出#2
27
输入#3
998 244
输出#3
573035660
说明/提示
Here are some examples for understanding carries:
1 1 1+ 11 0 0 1 0 1 1 1 0 1+ 0 011 0 1 1 0 1 0 1+ 101111 1 0 0 0
So f(7,4)=1 , f(5,1)=1 and f(5,3)=3 .
In the first test case, all the pairs meeting the constraints are (1,1),(1,5),(2,2),(2,3),(3,2),(4,4),(4,5),(4,6),(4,7),(5,1),(5,4),(5,6),(6,4),(6,5),(7,4).