CF1730F.Almost Sorted

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given a permutation pp of length nn and a positive integer kk . Consider a permutation qq of length nn such that for any integers ii and jj , where 1i<jn1 \le i < j \le n , we have $$$$p_{q_i} \le p_{q_j} + k. $$

Find the minimum possible number of inversions in a permutation qq .

A permutation is an array consisting of nn distinct integers from 11 to nn in arbitrary order. For example, \[2,3,1,5,4\] is a permutation, but \[1,2,2\] is not a permutation ( 22 appears twice in the array) and \[1,3,4\] is also not a permutation ( n=3n=3 but there is 44 in the array).

An inversion in a permutation aa is a pair of indices ii and jj ( 1lei,jlen1 \\le i, j \\le n ) such that i < j , but a\_i > a\_j$$.

输入格式

The first line contains two integers nn and kk ( 1n50001 \le n \le 5000 , 1k81 \le k \le 8 ).

The second line contains nn distinct integers p1,p2,,pnp_1, p_2, \ldots, p_n ( 1pin1 \le p_i \le n ).

输出格式

Print the minimum possible number of inversions in the permutation qq .

输入输出样例

  • 输入#1

    1 1
    1

    输出#1

    0
  • 输入#2

    3 1
    2 3 1

    输出#2

    1
  • 输入#3

    5 2
    5 4 3 2 1

    输出#3

    6
  • 输入#4

    10 3
    5 8 6 10 2 7 4 1 9 3

    输出#4

    18

说明/提示

In the first example, the only permutation is q=[1]q = [1] ( 00 inversions). Then pq1=1p_{q_1} = 1 .

In the second example, the only permutation with 11 inversion is q=[1,3,2]q = [1, 3, 2] . Then pq1=2p_{q_1} = 2 , pq2=1p_{q_2} = 1 , pq3=3p_{q_3} = 3 .

In the third example, one of the possible permutations with 66 inversions is q=[3,4,5,1,2]q = [3, 4, 5, 1, 2] . Then pq1=3p_{q_1} = 3 , pq2=2p_{q_2} = 2 , pq3=1p_{q_3} = 1 , pq4=5p_{q_4} = 5 , pq5=4p_{q_5} = 4 .

首页