CF1697F.Too Many Constraints

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are asked to build an array aa , consisting of nn integers, each element should be from 11 to kk .

The array should be non-decreasing ( aiai+1a_i \le a_{i+1} for all ii from 11 to n1n-1 ).

You are also given additional constraints on it. Each constraint is of one of three following types:

  • 1 i x1~i~x : aia_i should not be equal to xx ;
  • 2 i j x2~i~j~x : ai+aja_i + a_j should be less than or equal to xx ;
  • 3 i j x3~i~j~x : ai+aja_i + a_j should be greater than or equal to xx .

Build any non-decreasing array that satisfies all constraints or report that no such array exists.

输入格式

The first line contains a single integer tt ( 1t1041 \le t \le 10^4 ) — the number of testcases.

The first line of each testcase contains three integers n,mn, m and kk ( 2n21042 \le n \le 2 \cdot 10^4 ; 0m21040 \le m \le 2 \cdot 10^4 ; 2k102 \le k \le 10 ).

The ii -th of the next mm lines contains a description of a constraint. Each constraint is of one of three following types:

  • 1 i x1~i~x ( 1in1 \le i \le n ; 1xk1 \le x \le k ): aia_i should not be equal to xx ;
  • 2 i j x2~i~j~x ( 1i<jn1 \le i < j \le n ; 2x2k2 \le x \le 2 \cdot k ): ai+aja_i + a_j should be less than or equal to xx ;
  • 3 i j x3~i~j~x ( 1i<jn1 \le i < j \le n ; 2x2k2 \le x \le 2 \cdot k ): ai+aja_i + a_j should be greater than or equal to xx .

The sum of nn over all testcases doesn't exceed 21042 \cdot 10^4 . The sum of mm over all testcases doesn't exceed 21042 \cdot 10^4 .

输出格式

For each testcase, determine if there exists a non-decreasing array that satisfies all conditions. If there is no such array, then print -1. Otherwise, print any valid array — nn integers from 11 to kk .

输入输出样例

  • 输入#1

    4
    4 0 4
    2 2 3
    3 1 2 3
    1 2 2
    3 3 2
    1 1 1
    2 2 3 2
    3 2 3 2
    5 5 5
    3 2 5 7
    2 4 5 10
    3 4 5 6
    3 3 4 7
    2 1 5 7

    输出#1

    1 2 3 4
    1 3
    -1
    1 2 2 5 5
首页