CF1706D1.Chopping Carrots (Easy Version)

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

This is the easy version of the problem. The only difference between the versions is the constraints on nn , kk , aia_i , and the sum of nn over all test cases. You can make hacks only if both versions of the problem are solved.

Note the unusual memory limit.

You are given an array of integers a1,a2,,ana_1, a_2, \ldots, a_n of length nn , and an integer kk .

The cost of an array of integers p1,p2,,pnp_1, p_2, \ldots, p_n of length nn is $$$$\max\limits_{1 \le i \le n}\left(\left \lfloor \frac{a_i}{p_i} \right \rfloor \right) - \min\limits_{1 \le i \le n}\left(\left \lfloor \frac{a_i}{p_i} \right \rfloor \right). $$

Here, lfloorfracxyrfloor\\lfloor \\frac{x}{y} \\rfloor denotes the integer part of the division of xx by yy . Find the minimum cost of an array pp such that 1lep_ilek1 \\le p\_i \\le k for all 1leilen1 \\le i \\le n$$.

输入格式

The first line contains a single integer tt ( 1t1001 \le t \le 100 ) — the number of test cases.

The first line of each test case contains two integers nn and kk ( 1n,k30001 \le n, k \le 3000 ).

The second line contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n ( 1a1a2an30001 \le a_1 \le a_2 \le \ldots \le a_n \le 3000 ).

It is guaranteed that the sum of nn over all test cases does not exceed 30003000 .

输出格式

For each test case, print a single integer — the minimum possible cost of an array pp satisfying the condition above.

输入输出样例

  • 输入#1

    7
    5 2
    4 5 6 8 11
    5 12
    4 5 6 8 11
    3 1
    2 9 15
    7 3
    2 3 5 5 6 9 10
    6 56
    54 286 527 1436 2450 2681
    3 95
    16 340 2241
    2 2
    1 3

    输出#1

    2
    0
    13
    1
    4
    7
    0

说明/提示

In the first test case, the optimal array is p=[1,1,1,2,2]p = [1, 1, 1, 2, 2] . The resulting array of values of aipi\lfloor \frac{a_i}{p_i} \rfloor is [4,5,6,4,5][4, 5, 6, 4, 5] . The cost of pp is max1in(aipi)min1in(aipi)=64=2\max\limits_{1 \le i \le n}(\lfloor \frac{a_i}{p_i} \rfloor) - \min\limits_{1 \le i \le n}(\lfloor \frac{a_i}{p_i} \rfloor) = 6 - 4 = 2 . We can show that there is no array (satisfying the condition from the statement) with a smaller cost.

In the second test case, one of the optimal arrays is p=[12,12,12,12,12]p = [12, 12, 12, 12, 12] , which results in all aipi\lfloor \frac{a_i}{p_i} \rfloor being 00 .

In the third test case, the only possible array is p=[1,1,1]p = [1, 1, 1] .

首页