CF1684B.Z mod X = C
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
You are given three positive integers a , b , c ( a<b<c ). You have to find three positive integers x , y , z such that:
$$x \bmod y = a, $$ $$ y \bmod z = b, $$ $$ z \bmod x = c. $$ </p><p>Here $p \\bmod q$ denotes the remainder from dividing $p$ by $q$$$. It is possible to show that for such constraints the answer always exists.输入格式
The input consists of multiple test cases. The first line contains a single integer t ( 1≤t≤10000 ) — the number of test cases. Description of the test cases follows.
Each test case contains a single line with three integers a , b , c ( 1≤a<b<c≤108 ).
输出格式
For each test case output three positive integers x , y , z ( 1≤x,y,z≤1018 ) such that xmody=a , ymodz=b , zmodx=c .
You can output any correct answer.
输入输出样例
输入#1
4 1 3 4 127 234 421 2 7 8 59 94 388
输出#1
12 11 4 1063 234 1484 25 23 8 2221 94 2609
说明/提示
In the first test case:
$$x \bmod y = 12 \bmod 11 = 1; $$ </p><p> $$ y \bmod z = 11 \bmod 4 = 3; $$ </p><p> $$ z \bmod x = 4 \bmod 12 = 4. $$