CF1684B.Z mod X = C

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given three positive integers aa , bb , cc ( a<b<ca < b < c ). You have to find three positive integers xx , yy , zz such that:

$$x \bmod y = a, $$ $$ y \bmod z = b, $$ $$ z \bmod x = c. $$ </p><p>Here $p \\bmod q$ denotes the remainder from dividing $p$ by $q$$$. It is possible to show that for such constraints the answer always exists.

输入格式

The input consists of multiple test cases. The first line contains a single integer tt ( 1t100001 \le t \le 10\,000 ) — the number of test cases. Description of the test cases follows.

Each test case contains a single line with three integers aa , bb , cc ( 1a<b<c1081 \le a < b < c \le 10^8 ).

输出格式

For each test case output three positive integers xx , yy , zz ( 1x,y,z10181 \le x, y, z \le 10^{18} ) such that xmody=ax \bmod y = a , ymodz=by \bmod z = b , zmodx=cz \bmod x = c .

You can output any correct answer.

输入输出样例

  • 输入#1

    4
    1 3 4
    127 234 421
    2 7 8
    59 94 388

    输出#1

    12 11 4
    1063 234 1484
    25 23 8
    2221 94 2609

说明/提示

In the first test case:

$$x \bmod y = 12 \bmod 11 = 1; $$ </p><p> $$ y \bmod z = 11 \bmod 4 = 3; $$ </p><p> $$ z \bmod x = 4 \bmod 12 = 4. $$
首页