CF1661A.Array Balancing

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given two arrays of length nn : a1,a2,,ana_1, a_2, \dots, a_n and b1,b2,,bnb_1, b_2, \dots, b_n .

You can perform the following operation any number of times:

  1. Choose integer index ii ( 1in1 \le i \le n );
  2. Swap aia_i and bib_i .

What is the minimum possible sum a1a2+a2a3++an1an|a_1 - a_2| + |a_2 - a_3| + \dots + |a_{n-1} - a_n| ++ b1b2+b2b3++bn1bn|b_1 - b_2| + |b_2 - b_3| + \dots + |b_{n-1} - b_n| (in other words, i=1n1(aiai+1+bibi+1)\sum\limits_{i=1}^{n - 1}{\left(|a_i - a_{i+1}| + |b_i - b_{i+1}|\right)} ) you can achieve after performing several (possibly, zero) operations?

输入格式

The first line contains a single integer tt ( 1t40001 \le t \le 4000 ) — the number of test cases. Then, tt test cases follow.

The first line of each test case contains the single integer nn ( 2n252 \le n \le 25 ) — the length of arrays aa and bb .

The second line of each test case contains nn integers a1,a2,,ana_1, a_2, \dots, a_n ( 1ai1091 \le a_i \le 10^9 ) — the array aa .

The third line of each test case contains nn integers b1,b2,,bnb_1, b_2, \dots, b_n ( 1bi1091 \le b_i \le 10^9 ) — the array bb .

输出格式

For each test case, print one integer — the minimum possible sum i=1n1(aiai+1+bibi+1)\sum\limits_{i=1}^{n-1}{\left(|a_i - a_{i+1}| + |b_i - b_{i+1}|\right)} .

输入输出样例

  • 输入#1

    3
    4
    3 3 10 10
    10 10 3 3
    5
    1 2 3 4 5
    6 7 8 9 10
    6
    72 101 108 108 111 44
    10 87 111 114 108 100

    输出#1

    0
    8
    218

说明/提示

In the first test case, we can, for example, swap a3a_3 with b3b_3 and a4a_4 with b4b_4 . We'll get arrays a=[3,3,3,3]a = [3, 3, 3, 3] and b=[10,10,10,10]b = [10, 10, 10, 10] with sum 333+31010=03 \cdot |3 - 3| + 3 \cdot |10 - 10| = 0 .

In the second test case, arrays already have minimum sum (described above) equal to 12++45+67++910|1 - 2| + \dots + |4 - 5| + |6 - 7| + \dots + |9 - 10| =4+4=8= 4 + 4 = 8 .

In the third test case, we can, for example, swap a5a_5 and b5b_5 .

首页