CF1665A.GCD vs LCM
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
You are given a positive integer n . You have to find 4 positive integers a,b,c,d such that
- a+b+c+d=n , and
- gcd(a,b)=lcm(c,d) .
If there are several possible answers you can output any of them. It is possible to show that the answer always exists.
In this problem gcd(a,b) denotes the greatest common divisor of a and b , and lcm(c,d) denotes the least common multiple of c and d .
输入格式
The input consists of multiple test cases. The first line contains a single integer t ( 1≤t≤104 ) — the number of test cases. Description of the test cases follows.
Each test case contains a single line with integer n ( 4≤n≤109 ) — the sum of a , b , c , and d .
输出格式
For each test case output 4 positive integers a , b , c , d such that a+b+c+d=n and gcd(a,b)=lcm(c,d) .
输入输出样例
输入#1
5 4 7 8 9 10
输出#1
1 1 1 1 2 2 2 1 2 2 2 2 2 4 2 1 3 5 1 1
说明/提示
In the first test case gcd(1,1)=lcm(1,1)=1 , 1+1+1+1=4 .
In the second test case gcd(2,2)=lcm(2,1)=2 , 2+2+2+1=7 .
In the third test case gcd(2,2)=lcm(2,2)=2 , 2+2+2+2=8 .
In the fourth test case gcd(2,4)=lcm(2,1)=2 , 2+4+2+1=9 .
In the fifth test case gcd(3,5)=lcm(1,1)=1 , 3+5+1+1=10 .