CF1665B.Array Cloning Technique

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an array aa of nn integers. Initially there is only one copy of the given array.

You can do operations of two types:

  1. Choose any array and clone it. After that there is one more copy of the chosen array.
  2. Swap two elements from any two copies (maybe in the same copy) on any positions.

You need to find the minimal number of operations needed to obtain a copy where all elements are equal.

输入格式

The input consists of multiple test cases. The first line contains a single integer tt ( 1t1041 \le t \le 10^4 ) — the number of test cases. Description of the test cases follows.

The first line of each test case contains a single integer nn ( 1n1051 \le n \le 10^5 ) — the length of the array aa .

The second line of each test case contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n ( 109ai109-10^9 \le a_i \le 10^9 ) — the elements of the array aa .

It is guaranteed that the sum of nn over all test cases does not exceed 10510^5 .

输出格式

For each test case output a single integer — the minimal number of operations needed to create at least one copy where all elements are equal.

输入输出样例

  • 输入#1

    6
    1
    1789
    6
    0 1 3 3 7 0
    2
    -1000000000 1000000000
    4
    4 3 2 1
    5
    2 5 7 6 3
    7
    1 1 1 1 1 1 1

    输出#1

    0
    6
    2
    5
    7
    0

说明/提示

In the first test case all elements in the array are already equal, that's why the answer is 00 .

In the second test case it is possible to create a copy of the given array. After that there will be two identical arrays:

[ 0 1 3 3 7 0 ][ \ 0 \ 1 \ 3 \ 3 \ 7 \ 0 \ ] and [ 0 1 3 3 7 0 ][ \ 0 \ 1 \ 3 \ 3 \ 7 \ 0 \ ]

After that we can swap elements in a way so all zeroes are in one array:

[ 0 0 0 3 7 0 ][ \ 0 \ \underline{0} \ \underline{0} \ 3 \ 7 \ 0 \ ] and [ 1 1 3 3 7 3 ][ \ \underline{1} \ 1 \ 3 \ 3 \ 7 \ \underline{3} \ ]

Now let's create a copy of the first array:

[ 0 0 0 3 7 0 ][ \ 0 \ 0 \ 0 \ 3 \ 7 \ 0 \ ] , [ 0 0 0 3 7 0 ][ \ 0 \ 0 \ 0 \ 3 \ 7 \ 0 \ ] and [ 1 1 3 3 7 3 ][ \ 1 \ 1 \ 3 \ 3 \ 7 \ 3 \ ]

Let's swap elements in the first two copies:

[ 0 0 0 0 0 0 ][ \ 0 \ 0 \ 0 \ \underline{0} \ \underline{0} \ 0 \ ] , [ 3 7 0 3 7 0 ][ \ \underline{3} \ \underline{7} \ 0 \ 3 \ 7 \ 0 \ ] and [ 1 1 3 3 7 3 ][ \ 1 \ 1 \ 3 \ 3 \ 7 \ 3 \ ] .

Finally, we made a copy where all elements are equal and made 66 operations.

It can be proven that no fewer operations are enough.

首页