CF1637H.Minimize Inversions Number
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
You are given a permutation p of length n .
You can choose any subsequence, remove it from the permutation, and insert it at the beginning of the permutation keeping the same order.
For every k from 0 to n , find the minimal possible number of inversions in the permutation after you choose a subsequence of length exactly k .
输入格式
The first line contains a single integer t ( 1≤t≤50000 ) — the number of test cases.
The first line of each test case contains one integer n ( 1≤n≤5⋅105 ) — the length of the permutation.
The second line of each test case contains the permutation p1,p2,…,pn ( 1≤pi≤n ).
It is guaranteed that the total sum of n doesn't exceed 5⋅105 .
输出格式
For each test case output n+1 integers. The i -th of them must be the answer for the subsequence length of i−1 .
输入输出样例
输入#1
3 1 1 4 4 2 1 3 5 5 1 3 2 4
输出#1
0 0 4 2 2 1 4 5 4 2 2 1 5
说明/提示
In the second test case:
- For the length 0 : [4,2,1,3]→[4,2,1,3] : 4 inversions.
- For the length 1 : [4,2,1,3]→[1,4,2,3] : 2 inversions.
- For the length 2 : [4,2,1,3]→[2,1,4,3] , or [4,2,1,3]→[1,3,4,2] : 2 inversions.
- For the length 3 : [4,2,1,3]→[2,1,3,4] : 1 inversion.
- For the length 4 : [4,2,1,3]→[4,2,1,3] : 4 inversions.