CF1648B.Integral Array

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an array aa of nn positive integers numbered from 11 to nn . Let's call an array integral if for any two, not necessarily different, numbers xx and yy from this array, xyx \ge y , the number xy\left \lfloor \frac{x}{y} \right \rfloor ( xx divided by yy with rounding down) is also in this array.

You are guaranteed that all numbers in aa do not exceed cc . Your task is to check whether this array is integral.

输入格式

The input consists of multiple test cases. The first line contains a single integer tt ( 1t1041 \le t \le 10^4 ) — the number of test cases. Description of the test cases follows.

The first line of each test case contains two integers nn and cc ( 1n1061 \le n \le 10^6 , 1c1061 \le c \le 10^6 ) — the size of aa and the limit for the numbers in the array.

The second line of each test case contains nn integers a1a_1 , a2a_2 , ..., ana_n ( 1aic1 \le a_i \le c ) — the array aa .

Let NN be the sum of nn over all test cases and CC be the sum of cc over all test cases. It is guaranteed that N106N \le 10^6 and C106C \le 10^6 .

输出格式

For each test case print Yes if the array is integral and No otherwise.

输入输出样例

  • 输入#1

    4
    3 5
    1 2 5
    4 10
    1 3 3 7
    1 2
    2
    1 1
    1

    输出#1

    Yes
    No
    No
    Yes
  • 输入#2

    1
    1 1000000
    1000000

    输出#2

    No

说明/提示

In the first test case it is easy to see that the array is integral:

  • 11=1\left \lfloor \frac{1}{1} \right \rfloor = 1 , a1=1a_1 = 1 , this number occurs in the arry
  • 22=1\left \lfloor \frac{2}{2} \right \rfloor = 1
  • 55=1\left \lfloor \frac{5}{5} \right \rfloor = 1
  • 21=2\left \lfloor \frac{2}{1} \right \rfloor = 2 , a2=2a_2 = 2 , this number occurs in the array
  • 51=5\left \lfloor \frac{5}{1} \right \rfloor = 5 , a3=5a_3 = 5 , this number occurs in the array
  • 52=2\left \lfloor \frac{5}{2} \right \rfloor = 2 , a2=2a_2 = 2 , this number occurs in the array

Thus, the condition is met and the array is integral.

In the second test case it is enough to see that

73=213=2\left \lfloor \frac{7}{3} \right \rfloor = \left \lfloor 2\frac{1}{3} \right \rfloor = 2 , this number is not in aa , that's why it is not integral.

In the third test case 22=1\left \lfloor \frac{2}{2} \right \rfloor = 1 , but there is only 22 in the array, that's why it is not integral.

首页