CF1657A.Integer Moves

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

There's a chip in the point (0,0)(0, 0) of the coordinate plane. In one operation, you can move the chip from some point (x1,y1)(x_1, y_1) to some point (x2,y2)(x_2, y_2) if the Euclidean distance between these two points is an integer (i.e. (x1x2)2+(y1y2)2\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} is integer).

Your task is to determine the minimum number of operations required to move the chip from the point (0,0)(0, 0) to the point (x,y)(x, y) .

输入格式

The first line contains a single integer tt ( 1t30001 \le t \le 3000 ) — number of test cases.

The single line of each test case contains two integers xx and yy ( 0x,y500 \le x, y \le 50 ) — the coordinates of the destination point.

输出格式

For each test case, print one integer — the minimum number of operations required to move the chip from the point (0,0)(0, 0) to the point (x,y)(x, y) .

输入输出样例

  • 输入#1

    3
    8 6
    0 0
    9 15

    输出#1

    1
    0
    2

说明/提示

In the first example, one operation (0,0)(8,6)(0, 0) \rightarrow (8, 6) is enough. (08)2+(06)2=64+36=100=10\sqrt{(0-8)^2+(0-6)^2}=\sqrt{64+36}=\sqrt{100}=10 is an integer.

In the second example, the chip is already at the destination point.

In the third example, the chip can be moved as follows: (0,0)(5,12)(9,15)(0, 0) \rightarrow (5, 12) \rightarrow (9, 15) . (05)2+(012)2=25+144=169=13\sqrt{(0-5)^2+(0-12)^2}=\sqrt{25+144}=\sqrt{169}=13 and (59)2+(1215)2=16+9=25=5\sqrt{(5-9)^2+(12-15)^2}=\sqrt{16+9}=\sqrt{25}=5 are integers.

首页