CF1609G.A Stroll Around the Matrix

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

William has two arrays of numbers a1,a2,,ana_1, a_2, \dots, a_n and b1,b2,,bmb_1, b_2, \dots, b_m . The arrays satisfy the conditions of being convex. Formally an array cc of length kk is considered convex if cici1<ci+1cic_i - c_{i - 1} < c_{i + 1} - c_i for all ii from 22 to k1k - 1 and c1<c2c_1 < c_2 .

Throughout William's life he observed qq changes of two types happening to the arrays:

  1. Add the arithmetic progression d,d2,d3,,dkd, d \cdot 2, d \cdot 3, \dots, d \cdot k to the suffix of the array aa of length kk . The array after the change looks like this: [a1,a2,,ank,ank+1+d,ank+2+d2,,an+dk][a_1, a_2, \dots, a_{n - k}, a_{n - k + 1} + d, a_{n - k + 2} + d \cdot 2, \dots, a_n + d \cdot k] .
  2. The same operation, but for array bb .

After each change a matrix dd is created from arrays aa and bb , of size n×mn \times m , where di,j=ai+bjd_{i, j}=a_i + b_j . William wants to get from cell ( 1,11, 1 ) to cell ( n,mn, m ) of this matrix. From cell ( x,yx, y ) he can only move to cells ( x+1,yx + 1, y ) and ( x,y+1x, y + 1 ). The length of a path is calculated as the sum of numbers in cells visited by William, including the first and the last cells.

After each change William wants you to help find out the minimal length of the path he could take.

输入格式

The first line contains three integers nn , mm and qq ( 2n100,2m1052 \le n \le 100, 2 \le m \le 10^5 , 1q1051 \le q \le 10^5 ), the sizes of the arrays and the number of changes.

The second line contains nn integers a1,a2,,ana_1, a_2, \dots, a_n ( 1ai10121 \le a_i \le 10^{12} ), the contents of array aa .

The third line contains mm integers b1,b2,,bmb_1, b_2, \dots, b_m ( 1bi10121 \le b_i \le 10^{12} ), the contents of array bb .

Each of the next qq lines contains three integers typetype , kk and dd ( 1type21 \le type \le 2 , if type=1type = 1 , then 1kn1 \le k \le n otherwise 1km1 \le k \le m , 1d1031 \le d \le 10^3 ).

输出格式

After each change, output one integer, the minimum length of the path in the constructed matrix.

输入输出样例

  • 输入#1

    5 3 4
    1 2 4 7 11
    5 7 10
    1 3 2
    2 2 5
    1 5 4
    2 1 7

    输出#1

    98
    128
    219
    229
  • 输入#2

    5 6 7
    4 9 22 118 226
    7 94 238 395 565 738
    2 1 95
    1 4 54
    1 2 5
    1 2 87
    2 6 62
    2 1 143
    1 1 77

    输出#2

    3639
    5122
    5162
    5617
    7663
    7806
    7960
首页