CF1616D.Keep the Average High

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an array of integers a1,a2,,ana_1, a_2, \ldots, a_n and an integer xx .

You need to select the maximum number of elements in the array, such that for every subsegment al,al+1,,ara_l, a_{l + 1}, \ldots, a_r containing strictly more than one element (l<r)(l < r) , either:

  • At least one element on this subsegment is not selected, or
  • al+al+1++arx(rl+1)a_l + a_{l+1} + \ldots + a_r \geq x \cdot (r - l + 1) .

输入格式

The first line of input contains one integer tt ( 1t101 \leq t \leq 10 ): the number of test cases.

The descriptions of tt test cases follow, three lines per test case.

In the first line you are given one integer nn ( 1n500001 \leq n \leq 50\,000 ): the number of integers in the array.

The second line contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n ( 100000ai100000-100\,000 \leq a_i \leq 100\,000 ).

The third line contains one integer xx ( 100000x100000-100\,000 \leq x \leq 100\,000 ).

输出格式

For each test case, print one integer: the maximum number of elements that you can select.

输入输出样例

  • 输入#1

    4
    5
    1 2 3 4 5
    2
    10
    2 4 2 4 2 4 2 4 2 4
    3
    3
    -10 -5 -10
    -8
    3
    9 9 -3
    5

    输出#1

    4
    8
    2
    2

说明/提示

In the first example, one valid way to select the elements is [1,2,3,4,5][\underline{1}, 2, \underline{3}, \underline{4}, \underline{5}] . All subsegments satisfy at least one of the criteria. For example, for the subsegment l=1l = 1 , r=2r = 2 we have that the element 22 is not selected, satisfying the first criterion. For the subsegment l=3l = 3 , r=5r = 5 we have 3+4+5=12233 + 4 + 5 = 12 \ge 2 \cdot 3 , satisfying the second criterion.

We can't select all elements, because in this case for l=1l = 1 , r=2r = 2 all elements are selected and we have a1+a2=3<22a_1 + a_2 = 3 < 2 \cdot 2 . Thus, the maximum number of selected elements is 44 .

In the second example, one valid solution is [2,4,2,4,2,4,2,4,2,4][\underline{2}, \underline{4}, 2, \underline{4}, \underline{2}, \underline{4}, 2, \underline{4}, \underline{2}, \underline{4}] .

In the third example, one valid solution is [10,5,10][\underline{-10}, -5, \underline{-10}] .

In the fourth example, one valid solution is [9,9,3][\underline{9}, \underline{9}, -3] .

首页