CF1617B.GCD Problem

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Given a positive integer nn . Find three distinct positive integers aa , bb , cc such that a+b+c=na + b + c = n and gcd(a,b)=c\operatorname{gcd}(a, b) = c , where gcd(x,y)\operatorname{gcd}(x, y) denotes the greatest common divisor (GCD) of integers xx and yy .

输入格式

The input consists of multiple test cases. The first line contains a single integer tt ( 1t1051 \le t \le 10^5 ) — the number of test cases. Description of the test cases follows.

The first and only line of each test case contains a single integer nn ( 10n10910 \le n \le 10^9 ).

输出格式

For each test case, output three distinct positive integers aa , bb , cc satisfying the requirements. If there are multiple solutions, you can print any. We can show that an answer always exists.

输入输出样例

  • 输入#1

    6
    18
    63
    73
    91
    438
    122690412

    输出#1

    6 9 3
    21 39 3
    29 43 1
    49 35 7
    146 219 73
    28622 122661788 2

说明/提示

In the first test case, 6+9+3=186 + 9 + 3 = 18 and gcd(6,9)=3\operatorname{gcd}(6, 9) = 3 .

In the second test case, 21+39+3=6321 + 39 + 3 = 63 and gcd(21,39)=3\operatorname{gcd}(21, 39) = 3 .

In the third test case, 29+43+1=7329 + 43 + 1 = 73 and gcd(29,43)=1\operatorname{gcd}(29, 43) = 1 .

首页