CF1585F.Non-equal Neighbours

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an array of nn positive integers a1,a2,,ana_1, a_2, \ldots, a_n . Your task is to calculate the number of arrays of nn positive integers b1,b2,,bnb_1, b_2, \ldots, b_n such that:

  • 1biai1 \le b_i \le a_i for every ii ( 1in1 \le i \le n ), and
  • bibi+1b_i \neq b_{i+1} for every ii ( 1in11 \le i \le n - 1 ).

The number of such arrays can be very large, so print it modulo 998244353998\,244\,353 .

输入格式

The first line contains a single integer nn ( 1n21051 \le n \le 2 \cdot 10^5 ) — the length of the array aa .

The second line contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n ( 1ai1091 \le a_i \le 10^9 ).

输出格式

Print the answer modulo 998244353998\,244\,353 in a single line.

输入输出样例

  • 输入#1

    3
    2 2 2

    输出#1

    2
  • 输入#2

    2
    2 3

    输出#2

    4
  • 输入#3

    3
    1 1 1

    输出#3

    0

说明/提示

In the first test case possible arrays are [1,2,1][1, 2, 1] and [2,1,2][2, 1, 2] .

In the second test case possible arrays are [1,2][1, 2] , [1,3][1, 3] , [2,1][2, 1] and [2,3][2, 3] .

首页