CF1599E.Two Arrays
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
You are given two integer arrays of length N , A1 and A2 . You are also given Q queries of 4 types:
1 k l r x: set Aki:=min(Aki,x) for each l≤i≤r .
2 k l r x: set Aki:=max(Aki,x) for each l≤i≤r .
3 k l r x: set Aki:=Aki+x for each l≤i≤r .
4 l r: find the (∑i=lrF(A1i+A2i))%(109+7) where F(k) is the k -th Fibonacci number ( F(0)=0,F(1)=1,F(k)=F(k−1)+F(k−2) ), and x%y denotes the remainder of the division of x by y .
You should process these queries and answer each query of the fourth type.
输入格式
The first line contains two integers N and Q . ( 1≤N,Q≤5×104 )
The second line contains N integers, array A11,A12,…A1N . ( 0≤A1i≤106 )
The third line contains N integers, array A21,A22,…A2N . ( 0≤A2i≤106 )
The next Q lines describe the queries. Each line contains 5 or 3 integers, where the first integer denotes the type of the query. ( k∈{1,2} , 1≤l≤r≤N )
For queries of type 1 and 2, 0≤x≤109 holds.
For queries of type 3, −106≤x≤106 holds.
It is guaranteed that after every query each number in arrays A1 and A2 will be nonnegative.
输出格式
Print the answer to each query of the fourth type, in separate lines.
输入输出样例
输入#1
3 4 1 0 2 2 1 0 4 1 3 3 2 2 2 3 1 1 1 3 0 4 1 3
输出#1
4 4
输入#2
5 4 1 3 5 3 2 4 2 1 3 3 4 1 3 4 2 5 2 1 2 4 6 4 2 4
输出#2
18 26 68
说明/提示
In the first example: The answer for the first query is F(1+2)+F(0+1)+F(2+0)=F(3)+F(1)+F(2)=2+1+1=4 . After the second query, the array A2 changes to [2,4,0] . After the third query, the array A1 changes to [0,0,0] . The answer for the fourth query is F(0+2)+F(0+4)+F(0+0)=F(2)+F(4)+F(0)=1+3+0=4 .
In the second example: The answer for the first query is F(1+4)+F(3+2)+F(5+1)=F(5)+F(5)+F(6)=5+5+8=18 . The answer for the second query is F(3+2)+F(5+1)+F(3+3)+F(2+3)=F(5)+F(6)+F(6)+F(5)=5+8+8+5=26 . After the third query, the array A1 changes to [1,6,6,6,2] . The answer for the fourth query is F(6+2)+F(6+1)+F(6+3)=F(8)+F(7)+F(9)=21+13+34=68 .