CF1562A.The Miracle and the Sleeper

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given two integers ll and rr , lrl\le r . Find the largest possible value of amodba \bmod b over all pairs (a,b)(a, b) of integers for which rablr\ge a \ge b \ge l .

As a reminder, amodba \bmod b is a remainder we get when dividing aa by bb . For example, 26mod8=226 \bmod 8 = 2 .

输入格式

Each test contains multiple test cases.

The first line contains one positive integer tt (1t104)(1\le t\le 10^4) , denoting the number of test cases. Description of the test cases follows.

The only line of each test case contains two integers ll , rr ( 1lr1091\le l \le r \le 10^9 ).

输出格式

For every test case, output the largest possible value of amodba \bmod b over all pairs (a,b)(a, b) of integers for which rablr\ge a \ge b \ge l .

输入输出样例

  • 输入#1

    4
    1 1
    999999999 1000000000
    8 26
    1 999999999

    输出#1

    0
    1
    12
    499999999

说明/提示

In the first test case, the only allowed pair is (a,b)=(1,1)(a, b) = (1, 1) , for which amodb=1mod1=0a \bmod b = 1 \bmod 1 = 0 .

In the second test case, the optimal choice is pair (a,b)=(1000000000,999999999)(a, b) = (1000000000, 999999999) , for which amodb=1a \bmod b = 1 .

首页