CF1570D.Reachable Numbers

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Let's denote a function f(x)f(x) in such a way: we add 11 to xx , then, while there is at least one trailing zero in the resulting number, we remove that zero. For example,

  • f(599)=6f(599) = 6 : 599+1=600606599 + 1 = 600 \rightarrow 60 \rightarrow 6 ;
  • f(7)=8f(7) = 8 : 7+1=87 + 1 = 8 ;
  • f(9)=1f(9) = 1 : 9+1=1019 + 1 = 10 \rightarrow 1 ;
  • f(10099)=101f(10099) = 101 : 10099+1=10100101010110099 + 1 = 10100 \rightarrow 1010 \rightarrow 101 .

We say that some number yy is reachable from xx if we can apply function ff to xx some (possibly zero) times so that we get yy as a result. For example, 102102 is reachable from 1009810098 because f(f(f(10098)))=f(f(10099))=f(101)=102f(f(f(10098))) = f(f(10099)) = f(101) = 102 ; and any number is reachable from itself.

You are given a number nn ; your task is to count how many different numbers are reachable from nn .

输入格式

The first line contains one integer nn ( 1n1091 \le n \le 10^9 ).

输出格式

Print one integer: the number of different numbers that are reachable from nn .

输入输出样例

  • 输入#1

    1098

    输出#1

    20
  • 输入#2

    10

    输出#2

    19

说明/提示

The numbers that are reachable from 10981098 are:

1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,1098,10991, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1098, 1099 .

首页