CF1575K.Knitting Batik

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Mr. Chanek wants to knit a batik, a traditional cloth from Indonesia. The cloth forms a grid aa with size n×mn \times m . There are kk colors, and each cell in the grid can be one of the kk colors.

Define a sub-rectangle as an ordered pair of two cells ((x1,y1),(x2,y2))((x_1, y_1), (x_2, y_2)) , denoting the top-left cell and bottom-right cell (inclusively) of a sub-rectangle in aa . Two sub-rectangles ((x1,y1),(x2,y2))((x_1, y_1), (x_2, y_2)) and ((x3,y3),(x4,y4))((x_3, y_3), (x_4, y_4)) have the same pattern if and only if the following holds:

  • they have the same width ( x2x1=x4x3x_2 - x_1 = x_4 - x_3 );
  • they have the same height ( y2y1=y4y3y_2 - y_1 = y_4 - y_3 );
  • for every pair (i,j)(i, j) where 0ix2x10 \leq i \leq x_2 - x_1 and 0jy2y10 \leq j \leq y_2 - y_1 , the color of cells (x1+i,y1+j)(x_1 + i, y_1 + j) and (x3+i,y3+j)(x_3 + i, y_3 + j) are equal.

Count the number of possible batik color combinations, such that the subrectangles ((ax,ay),(ax+r1,ay+c1))((a_x, a_y),(a_x + r - 1, a_y + c - 1)) and ((bx,by),(bx+r1,by+c1))((b_x, b_y),(b_x + r - 1, b_y + c - 1)) have the same pattern.

Output the answer modulo 109+710^9 + 7 .

输入格式

The first line contains five integers nn , mm , kk , rr , and cc ( 1n,m1091 \leq n, m \leq 10^9 , 1k1091 \leq k \leq 10^9 , 1rmin(106,n)1 \leq r \leq \min(10^6, n) , 1cmin(106,m)1 \leq c \leq \min(10^6, m) ) — the size of the batik, the number of colors, and size of the sub-rectangle.

The second line contains four integers axa_x , aya_y , bxb_x , and byb_y ( 1ax,bxn1 \leq a_x, b_x \leq n , 1ay,bym1 \leq a_y, b_y \leq m ) — the top-left corners of the first and second sub-rectangle. Both of the sub-rectangles given are inside the grid ( 1ax+r11 \leq a_x + r - 1 , bx+r1nb_x + r - 1 \leq n , 1ay+c11 \leq a_y + c - 1 , by+c1mb_y + c - 1 \leq m ).

输出格式

Output an integer denoting the number of possible batik color combinations modulo 109+710^9 + 7 .

输入输出样例

  • 输入#1

    3 3 2 2 2
    1 1 2 2

    输出#1

    32
  • 输入#2

    4 5 170845 2 2
    1 4 3 1

    输出#2

    756680455

说明/提示

The following are all 3232 possible color combinations in the first example.

首页