CF1542C.Strange Function

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Let f(i)f(i) denote the minimum positive integer xx such that xx is not a divisor of ii .

Compute i=1nf(i)\sum_{i=1}^n f(i) modulo 109+710^9+7 . In other words, compute f(1)+f(2)++f(n)f(1)+f(2)+\dots+f(n) modulo 109+710^9+7 .

输入格式

The first line contains a single integer tt ( 1t1041\leq t\leq 10^4 ), the number of test cases. Then tt cases follow.

The only line of each test case contains a single integer nn ( 1n10161\leq n\leq 10^{16} ).

输出格式

For each test case, output a single integer ansans , where ans=i=1nf(i)ans=\sum_{i=1}^n f(i) modulo 109+710^9+7 .

输入输出样例

  • 输入#1

    6
    1
    2
    3
    4
    10
    10000000000000000

    输出#1

    2
    5
    7
    10
    26
    366580019

说明/提示

In the fourth test case n=4n=4 , so ans=f(1)+f(2)+f(3)+f(4)ans=f(1)+f(2)+f(3)+f(4) .

  • 11 is a divisor of 11 but 22 isn't, so 22 is the minimum positive integer that isn't a divisor of 11 . Thus, f(1)=2f(1)=2 .
  • 11 and 22 are divisors of 22 but 33 isn't, so 33 is the minimum positive integer that isn't a divisor of 22 . Thus, f(2)=3f(2)=3 .
  • 11 is a divisor of 33 but 22 isn't, so 22 is the minimum positive integer that isn't a divisor of 33 . Thus, f(3)=2f(3)=2 .
  • 11 and 22 are divisors of 44 but 33 isn't, so 33 is the minimum positive integer that isn't a divisor of 44 . Thus, f(4)=3f(4)=3 .

Therefore, ans=f(1)+f(2)+f(3)+f(4)=2+3+2+3=10ans=f(1)+f(2)+f(3)+f(4)=2+3+2+3=10 .

首页