CF1542E1.Abnormal Permutation Pairs (easy version)

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

This is the easy version of the problem. The only difference between the easy version and the hard version is the constraints on nn . You can only make hacks if both versions are solved.

A permutation of 1,2,,n1, 2, \ldots, n is a sequence of nn integers, where each integer from 11 to nn appears exactly once. For example, [2,3,1,4][2,3,1,4] is a permutation of 1,2,3,41, 2, 3, 4 , but [1,4,2,2][1,4,2,2] isn't because 22 appears twice in it.

Recall that the number of inversions in a permutation a1,a2,,ana_1, a_2, \ldots, a_n is the number of pairs of indices (i,j)(i, j) such that i<ji < j and ai>aja_i > a_j .

Let pp and qq be two permutations of 1,2,,n1, 2, \ldots, n . Find the number of permutation pairs (p,q)(p,q) that satisfy the following conditions:

  • pp is lexicographically smaller than qq .
  • the number of inversions in pp is greater than the number of inversions in qq .

Print the number of such pairs modulo modmod . Note that modmod may not be a prime.

输入格式

The only line contains two integers nn and modmod ( 1n501\le n\le 50 , 1mod1091\le mod\le 10^9 ).

输出格式

Print one integer, which is the answer modulo modmod .

输入输出样例

  • 输入#1

    4 403458273

    输出#1

    17

说明/提示

The following are all valid pairs (p,q)(p,q) when n=4n=4 .

  • p=[1,3,4,2]p=[1,3,4,2] , q=[2,1,3,4]q=[2,1,3,4] ,
  • p=[1,4,2,3]p=[1,4,2,3] , q=[2,1,3,4]q=[2,1,3,4] ,
  • p=[1,4,3,2]p=[1,4,3,2] , q=[2,1,3,4]q=[2,1,3,4] ,
  • p=[1,4,3,2]p=[1,4,3,2] , q=[2,1,4,3]q=[2,1,4,3] ,
  • p=[1,4,3,2]p=[1,4,3,2] , q=[2,3,1,4]q=[2,3,1,4] ,
  • p=[1,4,3,2]p=[1,4,3,2] , q=[3,1,2,4]q=[3,1,2,4] ,
  • p=[2,3,4,1]p=[2,3,4,1] , q=[3,1,2,4]q=[3,1,2,4] ,
  • p=[2,4,1,3]p=[2,4,1,3] , q=[3,1,2,4]q=[3,1,2,4] ,
  • p=[2,4,3,1]p=[2,4,3,1] , q=[3,1,2,4]q=[3,1,2,4] ,
  • p=[2,4,3,1]p=[2,4,3,1] , q=[3,1,4,2]q=[3,1,4,2] ,
  • p=[2,4,3,1]p=[2,4,3,1] , q=[3,2,1,4]q=[3,2,1,4] ,
  • p=[2,4,3,1]p=[2,4,3,1] , q=[4,1,2,3]q=[4,1,2,3] ,
  • p=[3,2,4,1]p=[3,2,4,1] , q=[4,1,2,3]q=[4,1,2,3] ,
  • p=[3,4,1,2]p=[3,4,1,2] , q=[4,1,2,3]q=[4,1,2,3] ,
  • p=[3,4,2,1]p=[3,4,2,1] , q=[4,1,2,3]q=[4,1,2,3] ,
  • p=[3,4,2,1]p=[3,4,2,1] , q=[4,1,3,2]q=[4,1,3,2] ,
  • p=[3,4,2,1]p=[3,4,2,1] , q=[4,2,1,3]q=[4,2,1,3] .
首页