CF1552D.Array Differentiation
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
You are given a sequence of n integers a1,a2,…,an .
Does there exist a sequence of n integers b1,b2,…,bn such that the following property holds?
- For each 1≤i≤n , there exist two (not necessarily distinct) indices j and k ( 1≤j,k≤n ) such that ai=bj−bk .
输入格式
The first line contains a single integer t ( 1≤t≤20 ) — the number of test cases. Then t test cases follow.
The first line of each test case contains one integer n ( 1≤n≤10 ).
The second line of each test case contains the n integers a1,…,an ( −105≤ai≤105 ).
输出格式
For each test case, output a line containing YES if a sequence b1,…,bn satisfying the required property exists, and NO otherwise.
输入输出样例
输入#1
5 5 4 -7 -1 5 10 1 0 3 1 10 100 4 -3 2 10 2 9 25 -171 250 174 152 242 100 -205 -258
输出#1
YES YES NO YES YES
说明/提示
In the first test case, the sequence b=[−9,2,1,3,−2] satisfies the property. Indeed, the following holds:
- a1=4=2−(−2)=b2−b5 ;
- a2=−7=−9−(−2)=b1−b5 ;
- a3=−1=1−2=b3−b2 ;
- a4=5=3−(−2)=b4−b5 ;
- a5=10=1−(−9)=b3−b1 .
In the second test case, it is sufficient to choose b=[0] , since a1=0=0−0=b1−b1 .
In the third test case, it is possible to show that no sequence b of length 3 satisfies the property.