CF1554A.Cherry

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given nn integers a1,a2,,ana_1, a_2, \ldots, a_n . Find the maximum value of max(al,al+1,,ar)min(al,al+1,,ar)max(a_l, a_{l + 1}, \ldots, a_r) \cdot min(a_l, a_{l + 1}, \ldots, a_r) over all pairs (l,r)(l, r) of integers for which 1l<rn1 \le l < r \le n .

输入格式

The first line contains a single integer tt ( 1t100001 \le t \le 10\,000 ) — the number of test cases.

The first line of each test case contains a single integer nn ( 2n1052 \le n \le 10^5 ).

The second line of each test case contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n ( 1ai1061 \le a_i \le 10^6 ).

It is guaranteed that the sum of nn over all test cases doesn't exceed 31053 \cdot 10^5 .

输出格式

For each test case, print a single integer — the maximum possible value of the product from the statement.

输入输出样例

  • 输入#1

    4
    3
    2 4 3
    4
    3 2 3 1
    2
    69 69
    6
    719313 273225 402638 473783 804745 323328

    输出#1

    12
    6
    4761
    381274500335

说明/提示

Let f(l,r)=max(al,al+1,,ar)min(al,al+1,,ar)f(l, r) = max(a_l, a_{l + 1}, \ldots, a_r) \cdot min(a_l, a_{l + 1}, \ldots, a_r) .

In the first test case,

  • f(1,2)=max(a1,a2)min(a1,a2)=max(2,4)min(2,4)=42=8f(1, 2) = max(a_1, a_2) \cdot min(a_1, a_2) = max(2, 4) \cdot min(2, 4) = 4 \cdot 2 = 8 .
  • f(1,3)=max(a1,a2,a3)min(a1,a2,a3)=max(2,4,3)min(2,4,3)=42=8f(1, 3) = max(a_1, a_2, a_3) \cdot min(a_1, a_2, a_3) = max(2, 4, 3) \cdot min(2, 4, 3) = 4 \cdot 2 = 8 .
  • f(2,3)=max(a2,a3)min(a2,a3)=max(4,3)min(4,3)=43=12f(2, 3) = max(a_2, a_3) \cdot min(a_2, a_3) = max(4, 3) \cdot min(4, 3) = 4 \cdot 3 = 12 .

So the maximum is f(2,3)=12f(2, 3) = 12 .

In the second test case, the maximum is f(1,2)=f(1,3)=f(2,3)=6f(1, 2) = f(1, 3) = f(2, 3) = 6 .

首页