CF1554B.Cobb
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
You are given n integers a1,a2,…,an and an integer k . Find the maximum value of i⋅j−k⋅(ai∣aj) over all pairs (i,j) of integers with 1≤i<j≤n . Here, ∣ is the bitwise OR operator.
输入格式
The first line contains a single integer t ( 1≤t≤10000 ) — the number of test cases.
The first line of each test case contains two integers n ( 2≤n≤105 ) and k ( 1≤k≤min(n,100) ).
The second line of each test case contains n integers a1,a2,…,an ( 0≤ai≤n ).
It is guaranteed that the sum of n over all test cases doesn't exceed 3⋅105 .
输出格式
For each test case, print a single integer — the maximum possible value of max(i⋅j−k⋅(ai or aj)) .
输入输出样例
输入#1
4 3 3 1 1 3 2 2 1 2 4 3 0 1 2 3 6 6 3 2 0 0 5 6
输出#1
-1 -4 3 12
说明/提示
Let f(i,j)=i⋅j−k⋅(ai∣aj) .
In the first test case,
- f(1,2)=1⋅2−k⋅(a1∣a2)=2−3⋅(1∣1)=−1 .
- f(1,3)=1⋅3−k⋅(a1∣a3)=3−3⋅(1∣3)=−6 .
- f(2,3)=2⋅3−k⋅(a2∣a3)=6−3⋅(1∣3)=−3 .
So the maximum is f(1,2)=−1 .
In the fourth test case, the maximum is f(3,4)=12 .