CF1526A.Mean Inequality

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an array aa of 2n2n distinct integers. You want to arrange the elements of the array in a circle such that no element is equal to the the arithmetic mean of its 22 neighbours.

More formally, find an array bb , such that:

  • bb is a permutation of aa .
  • For every ii from 11 to 2n2n , bibi1+bi+12b_i \neq \frac{b_{i-1}+b_{i+1}}{2} , where b0=b2nb_0 = b_{2n} and b2n+1=b1b_{2n+1} = b_1 .

It can be proved that under the constraints of this problem, such array bb always exists.

输入格式

The first line of input contains a single integer tt (1t1000)(1 \leq t \leq 1000) — the number of testcases. The description of testcases follows.

The first line of each testcase contains a single integer nn (1n25)(1 \leq n \leq 25) .

The second line of each testcase contains 2n2n integers a1,a2,,a2na_1, a_2, \ldots, a_{2n} (1ai109)(1 \leq a_i \leq 10^9) — elements of the array.

Note that there is no limit to the sum of nn over all testcases.

输出格式

For each testcase, you should output 2n2n integers, b1,b2,b2nb_1, b_2, \ldots b_{2n} , for which the conditions from the statement are satisfied.

输入输出样例

  • 输入#1

    3
    3
    1 2 3 4 5 6
    2
    123 456 789 10
    1
    6 9

    输出#1

    3 1 4 2 5 6
    123 10 456 789
    9 6

说明/提示

In the first testcase, array [3,1,4,2,5,6][3, 1, 4, 2, 5, 6] works, as it's a permutation of [1,2,3,4,5,6][1, 2, 3, 4, 5, 6] , and 3+421\frac{3+4}{2}\neq 1 , 1+224\frac{1+2}{2}\neq 4 , 4+522\frac{4+5}{2}\neq 2 , 2+625\frac{2+6}{2}\neq 5 , 5+326\frac{5+3}{2}\neq 6 , 6+123\frac{6+1}{2}\neq 3 .

首页