CF1530F.Bingo

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Getting ready for VK Fest 2021, you prepared a table with nn rows and nn columns, and filled each cell of this table with some event related with the festival that could either happen or not: for example, whether you will win a prize on the festival, or whether it will rain.

Forecasting algorithms used in VK have already estimated the probability for each event to happen. Event in row ii and column jj will happen with probability ai,j104a_{i, j} \cdot 10^{-4} . All of the events are mutually independent.

Let's call the table winning if there exists a line such that all nn events on it happen. The line could be any horizontal line (cells (i,1),(i,2),,(i,n)(i, 1), (i, 2), \ldots, (i, n) for some ii ), any vertical line (cells (1,j),(2,j),,(n,j)(1, j), (2, j), \ldots, (n, j) for some jj ), the main diagonal (cells (1,1),(2,2),,(n,n)(1, 1), (2, 2), \ldots, (n, n) ), or the antidiagonal (cells (1,n),(2,n1),,(n,1)(1, n), (2, n - 1), \ldots, (n, 1) ).

Find the probability of your table to be winning, and output it modulo 3160731\,607 (see Output section).

输入格式

The first line contains a single integer nn ( 2n212 \le n \le 21 ) — the dimensions of the table.

The ii -th of the next nn lines contains nn integers ai,1,ai,2,,ai,na_{i, 1}, a_{i, 2}, \ldots, a_{i, n} ( 0<ai,j<1040 < a_{i, j} < 10^4 ). The probability of event in cell (i,j)(i, j) to happen is ai,j104a_{i, j} \cdot 10^{-4} .

输出格式

Print the probability that your table will be winning, modulo 3160731\,607 .

Formally, let M=31607M = 31\,607 . It can be shown that the answer can be expressed as an irreducible fraction pq\frac{p}{q} , where pp and qq are integers and q≢0(modM)q \not \equiv 0 \pmod{M} . Output the integer equal to pq1modMp \cdot q^{-1} \bmod M . In other words, output such an integer xx that 0x<M0 \le x < M and xqp(modM)x \cdot q \equiv p \pmod{M} .

输入输出样例

  • 输入#1

    2
    5000 5000
    5000 5000

    输出#1

    5927
  • 输入#2

    2
    2500 6000
    3000 4000

    输出#2

    24812
  • 输入#3

    3
    1000 2000 3000
    4000 5000 6000
    7000 8000 9000

    输出#3

    25267

说明/提示

In the first example, any two events form a line, and the table will be winning if any two events happen. The probability of this is 1116\frac{11}{16} , and 59271611(mod31607)5927 \cdot 16 \equiv 11 \pmod{31\,607} .

首页