CF1499D.The Number of Pairs

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given three positive (greater than zero) integers cc , dd and xx .

You have to find the number of pairs of positive integers (a,b)(a, b) such that equality clcm(a,b)dgcd(a,b)=xc \cdot lcm(a, b) - d \cdot gcd(a, b) = x holds. Where lcm(a,b)lcm(a, b) is the least common multiple of aa and bb and gcd(a,b)gcd(a, b) is the greatest common divisor of aa and bb .

输入格式

The first line contains one integer tt ( 1t1041 \le t \le 10^4 ) — the number of test cases.

Each test case consists of one line containing three integer cc , dd and xx ( 1c,d,x1071 \le c, d, x \le 10^7 ).

输出格式

For each test case, print one integer — the number of pairs ( a,ba, b ) such that the above equality holds.

输入输出样例

  • 输入#1

    4
    1 1 3
    4 2 6
    3 3 7
    2 7 25

    输出#1

    4
    3
    0
    8

说明/提示

In the first example, the correct pairs are: ( 1,41, 4 ), ( 4,14,1 ), ( 3,63, 6 ), ( 6,36, 3 ).

In the second example, the correct pairs are: ( 1,21, 2 ), ( 2,12, 1 ), ( 3,33, 3 ).

首页