CF1478C.Nezzar and Symmetric Array

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Long time ago there was a symmetric array a1,a2,,a2na_1,a_2,\ldots,a_{2n} consisting of 2n2n distinct integers. Array a1,a2,,a2na_1,a_2,\ldots,a_{2n} is called symmetric if for each integer 1i2n1 \le i \le 2n , there exists an integer 1j2n1 \le j \le 2n such that ai=aja_i = -a_j .

For each integer 1i2n1 \le i \le 2n , Nezzar wrote down an integer did_i equal to the sum of absolute differences from aia_i to all integers in aa , i. e. di=j=12naiajd_i = \sum_{j = 1}^{2n} {|a_i - a_j|} .

Now a million years has passed and Nezzar can barely remember the array dd and totally forget aa . Nezzar wonders if there exists any symmetric array aa consisting of 2n2n distinct integers that generates the array dd .

输入格式

The first line contains a single integer tt ( 1t1051 \le t \le 10^5 ) — the number of test cases.

The first line of each test case contains a single integer nn ( 1n1051 \le n \le 10^5 ).

The second line of each test case contains 2n2n integers d1,d2,,d2nd_1, d_2, \ldots, d_{2n} ( 0di10120 \le d_i \le 10^{12} ).

It is guaranteed that the sum of nn over all test cases does not exceed 10510^5 .

输出格式

For each test case, print "YES" in a single line if there exists a possible array aa . Otherwise, print "NO".

You can print letters in any case (upper or lower).

输入输出样例

  • 输入#1

    6
    2
    8 12 8 12
    2
    7 7 9 11
    2
    7 11 7 11
    1
    1 1
    4
    40 56 48 40 80 56 80 48
    6
    240 154 210 162 174 154 186 240 174 186 162 210

    输出#1

    YES
    NO
    NO
    NO
    NO
    YES

说明/提示

In the first test case, a=[1,3,1,3]a=[1,-3,-1,3] is one possible symmetric array that generates the array d=[8,12,8,12]d=[8,12,8,12] .

In the second test case, it can be shown that there is no symmetric array consisting of distinct integers that can generate array dd .

首页