CF1497A.Meximization

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an integer nn and an array a1,a2,,ana_1, a_2, \ldots, a_n . You should reorder the elements of the array aa in such way that the sum of MEX\textbf{MEX} on prefixes ( ii -th prefix is a1,a2,,aia_1, a_2, \ldots, a_i ) is maximized.

Formally, you should find an array b1,b2,,bnb_1, b_2, \ldots, b_n , such that the sets of elements of arrays aa and bb are equal (it is equivalent to array bb can be found as an array aa with some reordering of its elements) and i=1nMEX(b1,b2,,bi)\sum\limits_{i=1}^{n} \textbf{MEX}(b_1, b_2, \ldots, b_i) is maximized.

MEX\textbf{MEX} of a set of nonnegative integers is the minimal nonnegative integer such that it is not in the set.

For example, MEX({1,2,3})=0\textbf{MEX}(\{1, 2, 3\}) = 0 , MEX({0,1,2,4,5})=3\textbf{MEX}(\{0, 1, 2, 4, 5\}) = 3 .

输入格式

The first line contains a single integer tt (1t100)(1 \le t \le 100) — the number of test cases.

The first line of each test case contains a single integer nn (1n100)(1 \le n \le 100) .

The second line of each test case contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n (0ai100)(0 \le a_i \le 100) .

输出格式

For each test case print an array b1,b2,,bnb_1, b_2, \ldots, b_n — the optimal reordering of a1,a2,,ana_1, a_2, \ldots, a_n , so the sum of MEX\textbf{MEX} on its prefixes is maximized.

If there exist multiple optimal answers you can find any.

输入输出样例

  • 输入#1

    3
    7
    4 2 0 1 3 3 7
    5
    2 2 8 6 9
    1
    0

    输出#1

    0 1 2 3 4 7 3 
    2 6 8 9 2 
    0

说明/提示

In the first test case in the answer MEX\textbf{MEX} for prefixes will be:

  1. MEX({0})=1\textbf{MEX}(\{0\}) = 1
  2. MEX({0,1})=2\textbf{MEX}(\{0, 1\}) = 2
  3. MEX({0,1,2})=3\textbf{MEX}(\{0, 1, 2\}) = 3
  4. MEX({0,1,2,3})=4\textbf{MEX}(\{0, 1, 2, 3\}) = 4
  5. MEX({0,1,2,3,4})=5\textbf{MEX}(\{0, 1, 2, 3, 4\}) = 5
  6. MEX({0,1,2,3,4,7})=5\textbf{MEX}(\{0, 1, 2, 3, 4, 7\}) = 5
  7. MEX({0,1,2,3,4,7,3})=5\textbf{MEX}(\{0, 1, 2, 3, 4, 7, 3\}) = 5

The sum of MEX=1+2+3+4+5+5+5=25\textbf{MEX} = 1 + 2 + 3 + 4 + 5 + 5 + 5 = 25 . It can be proven, that it is a maximum possible sum of MEX\textbf{MEX} on prefixes.

首页