CF1497C2.k-LCM (hard version)

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

It is the hard version of the problem. The only difference is that in this version 3kn3 \le k \le n .

You are given a positive integer nn . Find kk positive integers a1,a2,,aka_1, a_2, \ldots, a_k , such that:

  • a1+a2++ak=na_1 + a_2 + \ldots + a_k = n
  • LCM(a1,a2,,ak)n2LCM(a_1, a_2, \ldots, a_k) \le \frac{n}{2}

Here LCMLCM is the least common multiple of numbers a1,a2,,aka_1, a_2, \ldots, a_k .

We can show that for given constraints the answer always exists.

输入格式

The first line contains a single integer tt (1t104)(1 \le t \le 10^4) — the number of test cases.

The only line of each test case contains two integers nn , kk ( 3n1093 \le n \le 10^9 , 3kn3 \le k \le n ).

It is guaranteed that the sum of kk over all test cases does not exceed 10510^5 .

输出格式

For each test case print kk positive integers a1,a2,,aka_1, a_2, \ldots, a_k , for which all conditions are satisfied.

输入输出样例

  • 输入#1

    2
    6 4
    9 5

    输出#1

    1 2 2 1 
    1 3 3 1 1
首页