CF1498A.GCD Sum

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

The \text{ gcdSum } of a positive integer is the gcdgcd of that integer with its sum of digits. Formally, \text{ gcdSum }(x) = gcd(x, \text{ sum of digits of } x) for a positive integer xx . gcd(a,b)gcd(a, b) denotes the greatest common divisor of aa and bb — the largest integer dd such that both integers aa and bb are divisible by dd .

For example: \text{ gcdSum }(762) = gcd(762, 7 + 6 + 2)=gcd(762,15) = 3 .

Given an integer nn , find the smallest integer xnx \ge n such that \text{ gcdSum }(x) > 1 .

输入格式

The first line of input contains one integer tt (1t104)(1 \le t \le 10^4) — the number of test cases.

Then tt lines follow, each containing a single integer nn (1n1018)(1 \le n \le 10^{18}) .

All test cases in one test are different.

输出格式

Output tt lines, where the ii -th line is a single integer containing the answer to the ii -th test case.

输入输出样例

  • 输入#1

    3
    11
    31
    75

    输出#1

    12
    33
    75

说明/提示

Let us explain the three test cases in the sample.

Test case 1: n=11n = 11 :

\text{ gcdSum }(11) = gcd(11, 1 + 1) = gcd(11,\ 2) = 1 .

\text{ gcdSum }(12) = gcd(12, 1 + 2) = gcd(12,\ 3) = 3 .

So the smallest number 11\ge 11 whose gcdSumgcdSum >1> 1 is 1212 .

Test case 2: n=31n = 31 :

\text{ gcdSum }(31) = gcd(31, 3 + 1) = gcd(31,\ 4) = 1 .

\text{ gcdSum }(32) = gcd(32, 3 + 2) = gcd(32,\ 5) = 1 .

\text{ gcdSum }(33) = gcd(33, 3 + 3) = gcd(33,\ 6) = 3 .

So the smallest number 31\ge 31 whose gcdSumgcdSum >1> 1 is 3333 .

Test case 3:  n=75\ n = 75 :

\text{ gcdSum }(75) = gcd(75, 7 + 5) = gcd(75,\ 12) = 3 .

The \text{ gcdSum } of 7575 is already >1> 1 . Hence, it is the answer.

首页