CF1466E.Apollo versus Pan

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Only a few know that Pan and Apollo weren't only battling for the title of the GOAT musician. A few millenniums later, they also challenged each other in math (or rather in fast calculations). The task they got to solve is the following:

Let x1,x2,,xnx_1, x_2, \ldots, x_n be the sequence of nn non-negative integers. Find this value: $$$$\sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n (x_i , & , x_j) \cdot (x_j , | , x_k) $$

Here \\& denotes the bitwise and, and | denotes the bitwise or.

Pan and Apollo could solve this in a few seconds. Can you do it too? For convenience, find the answer modulo 109+710^9 + 7$$.

输入格式

The first line of the input contains a single integer tt ( 1t10001 \leq t \leq 1\,000 ) denoting the number of test cases, then tt test cases follow.

The first line of each test case consists of a single integer nn ( 1n51051 \leq n \leq 5 \cdot 10^5 ), the length of the sequence. The second one contains nn non-negative integers x1,x2,,xnx_1, x_2, \ldots, x_n ( 0xi<2600 \leq x_i < 2^{60} ), elements of the sequence.

The sum of nn over all test cases will not exceed 51055 \cdot 10^5 .

输出格式

Print tt lines. The ii -th line should contain the answer to the ii -th text case.

输入输出样例

  • 输入#1

    8
    2
    1 7
    3
    1 2 4
    4
    5 5 5 5
    5
    6 2 2 1 0
    1
    0
    1
    1
    6
    1 12 123 1234 12345 123456
    5
    536870912 536870911 1152921504606846975 1152921504606846974 1152921504606846973

    输出#1

    128
    91
    1600
    505
    0
    1
    502811676
    264880351
首页