CF1473E.Minimum Path

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given a weighted undirected connected graph consisting of nn vertices and mm edges. It is guaranteed that there are no self-loops or multiple edges in the given graph.

Let's define the weight of the path consisting of kk edges with indices e1,e2,,eke_1, e_2, \dots, e_k as i=1kweimaxi=1kwei+mini=1kwei\sum\limits_{i=1}^{k}{w_{e_i}} - \max\limits_{i=1}^{k}{w_{e_i}} + \min\limits_{i=1}^{k}{w_{e_i}} , where wiw_i — weight of the ii -th edge in the graph.

Your task is to find the minimum weight of the path from the 11 -st vertex to the ii -th vertex for each ii ( 2in2 \le i \le n ).

输入格式

The first line contains two integers nn and mm ( 2n21052 \le n \le 2 \cdot 10^5 ; 1m21051 \le m \le 2 \cdot 10^5 ) — the number of vertices and the number of edges in the graph.

Following mm lines contains three integers vi,ui,wiv_i, u_i, w_i ( 1vi,uin1 \le v_i, u_i \le n ; 1wi1091 \le w_i \le 10^9 ; viuiv_i \neq u_i ) — endpoints of the ii -th edge and its weight respectively.

输出格式

Print n1n-1 integers — the minimum weight of the path from 11 -st vertex to the ii -th vertex for each ii ( 2in2 \le i \le n ).

输入输出样例

  • 输入#1

    5 4
    5 3 4
    2 1 1
    3 2 2
    2 4 2

    输出#1

    1 2 2 4
  • 输入#2

    6 8
    3 1 1
    3 6 2
    5 4 2
    4 2 2
    6 1 1
    5 2 1
    3 2 3
    1 5 4

    输出#2

    2 1 4 3 1
  • 输入#3

    7 10
    7 5 5
    2 3 3
    4 7 1
    5 3 6
    2 7 6
    6 2 6
    3 7 6
    4 2 1
    3 1 4
    1 7 4

    输出#3

    3 4 2 7 7 3
首页