CF1405A.Permutation Forgery
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation ( 2 appears twice in the array) and [1,3,4] is also not a permutation ( n=3 but there is 4 in the array).
Let p be any permutation of length n . We define the fingerprint F(p) of p as the sorted array of sums of adjacent elements in p . More formally,
$$F(p)=\mathrm{sort}([p_1+p_2,p_2+p_3,\ldots,p_{n-1}+p_n]). $$ </p><p>For example, if $n=4$ and $p=\[1,4,2,3\],$ then the fingerprint is given by $F(p)=\\mathrm{sort}(\[1+4,4+2,2+3\])=\\mathrm{sort}(\[5,6,5\])=\[5,5,6\]$ .</p><p>You are given a permutation $p$ of length $n$ . Your task is to find a <span class="tex-font-style-bf">different</span> permutation $p'$ with the same fingerprint. Two permutations $p$ and $p'$ are considered different if there is some index $i$ such that $p\_i \\ne p'\_i$$$.输入格式
Each test contains multiple test cases. The first line contains the number of test cases t ( 1≤t≤668 ). Description of the test cases follows.
The first line of each test case contains a single integer n ( 2≤n≤100 ) — the length of the permutation.
The second line of each test case contains n integers p1,…,pn ( 1≤pi≤n ). It is guaranteed that p is a permutation.
输出格式
For each test case, output n integers p1′,…,pn′ — a permutation such that p′=p and F(p′)=F(p) .
We can prove that for every permutation satisfying the input constraints, a solution exists.
If there are multiple solutions, you may output any.
输入输出样例
输入#1
3 2 1 2 6 2 1 6 5 4 3 5 2 4 3 1 5
输出#1
2 1 1 2 5 6 3 4 3 1 5 2 4
说明/提示
In the first test case, F(p)=sort([1+2])=[3] .
And F(p′)=sort([2+1])=[3] .
In the second test case, F(p)=sort([2+1,1+6,6+5,5+4,4+3])=sort([3,7,11,9,7])=[3,7,7,9,11] .
And F(p′)=sort([1+2,2+5,5+6,6+3,3+4])=sort([3,7,11,9,7])=[3,7,7,9,11] .
In the third test case, F(p)=sort([2+4,4+3,3+1,1+5])=sort([6,7,4,6])=[4,6,6,7] .
And F(p′)=sort([3+1,1+5,5+2,2+4])=sort([4,6,7,6])=[4,6,6,7] .