CF1408A.Circle Coloring
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
You are given three sequences: a1,a2,…,an ; b1,b2,…,bn ; c1,c2,…,cn .
For each i , ai=bi , ai=ci , bi=ci .
Find a sequence p1,p2,…,pn , that satisfy the following conditions:
- pi∈{ai,bi,ci}
- pi=p(imodn)+1 .
In other words, for each element, you need to choose one of the three possible values, such that no two adjacent elements (where we consider elements i,i+1 adjacent for i<n and also elements 1 and n ) will have equal value.
It can be proved that in the given constraints solution always exists. You don't need to minimize/maximize anything, you need to find any proper sequence.
输入格式
The first line of input contains one integer t ( 1≤t≤100 ): the number of test cases.
The first line of each test case contains one integer n ( 3≤n≤100 ): the number of elements in the given sequences.
The second line contains n integers a1,a2,…,an ( 1≤ai≤100 ).
The third line contains n integers b1,b2,…,bn ( 1≤bi≤100 ).
The fourth line contains n integers c1,c2,…,cn ( 1≤ci≤100 ).
It is guaranteed that ai=bi , ai=ci , bi=ci for all i .
输出格式
For each test case, print n integers: p1,p2,…,pn ( pi∈{ai,bi,ci} , pi=pimodn+1 ).
If there are several solutions, you can print any.
输入输出样例
输入#1
5 3 1 1 1 2 2 2 3 3 3 4 1 2 1 2 2 1 2 1 3 4 3 4 7 1 3 3 1 1 1 1 2 4 4 3 2 2 4 4 2 2 2 4 4 2 3 1 2 1 2 3 3 3 1 2 10 1 1 1 2 2 2 3 3 3 1 2 2 2 3 3 3 1 1 1 2 3 3 3 1 1 1 2 2 2 3
输出#1
1 2 3 1 2 1 2 1 3 4 3 2 4 2 1 3 2 1 2 3 1 2 3 1 2 3 2
说明/提示
In the first test case p=[1,2,3] .
It is a correct answer, because:
- p1=1=a1 , p2=2=b2 , p3=3=c3
- $p_1 \neq p_2 $ , $p_2 \neq p_3 $ , p3=p1
All possible correct answers to this test case are: [1,2,3] , [1,3,2] , [2,1,3] , [2,3,1] , [3,1,2] , [3,2,1] .
In the second test case p=[1,2,1,2] .
In this sequence p1=a1 , p2=a2 , p3=a3 , p4=a4 . Also we can see, that no two adjacent elements of the sequence are equal.
In the third test case p=[1,3,4,3,2,4,2] .
In this sequence p1=a1 , p2=a2 , p3=b3 , p4=b4 , p5=b5 , p6=c6 , p7=c7 . Also we can see, that no two adjacent elements of the sequence are equal.