CF1408A.Circle Coloring

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given three sequences: a1,a2,,ana_1, a_2, \ldots, a_n ; b1,b2,,bnb_1, b_2, \ldots, b_n ; c1,c2,,cnc_1, c_2, \ldots, c_n .

For each ii , aibia_i \neq b_i , aicia_i \neq c_i , bicib_i \neq c_i .

Find a sequence p1,p2,,pnp_1, p_2, \ldots, p_n , that satisfy the following conditions:

  • pi{ai,bi,ci}p_i \in \{a_i, b_i, c_i\}
  • pip(imodn)+1p_i \neq p_{(i \mod n) + 1} .

In other words, for each element, you need to choose one of the three possible values, such that no two adjacent elements (where we consider elements i,i+1i,i+1 adjacent for i<ni<n and also elements 11 and nn ) will have equal value.

It can be proved that in the given constraints solution always exists. You don't need to minimize/maximize anything, you need to find any proper sequence.

输入格式

The first line of input contains one integer tt ( 1t1001 \leq t \leq 100 ): the number of test cases.

The first line of each test case contains one integer nn ( 3n1003 \leq n \leq 100 ): the number of elements in the given sequences.

The second line contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n ( 1ai1001 \leq a_i \leq 100 ).

The third line contains nn integers b1,b2,,bnb_1, b_2, \ldots, b_n ( 1bi1001 \leq b_i \leq 100 ).

The fourth line contains nn integers c1,c2,,cnc_1, c_2, \ldots, c_n ( 1ci1001 \leq c_i \leq 100 ).

It is guaranteed that aibia_i \neq b_i , aicia_i \neq c_i , bicib_i \neq c_i for all ii .

输出格式

For each test case, print nn integers: p1,p2,,pnp_1, p_2, \ldots, p_n ( pi{ai,bi,ci}p_i \in \{a_i, b_i, c_i\} , pipimodn+1p_i \neq p_{i \mod n + 1} ).

If there are several solutions, you can print any.

输入输出样例

  • 输入#1

    5
    3
    1 1 1
    2 2 2
    3 3 3
    4
    1 2 1 2
    2 1 2 1
    3 4 3 4
    7
    1 3 3 1 1 1 1
    2 4 4 3 2 2 4
    4 2 2 2 4 4 2
    3
    1 2 1
    2 3 3
    3 1 2
    10
    1 1 1 2 2 2 3 3 3 1
    2 2 2 3 3 3 1 1 1 2
    3 3 3 1 1 1 2 2 2 3

    输出#1

    1 2 3
    1 2 1 2
    1 3 4 3 2 4 2
    1 3 2
    1 2 3 1 2 3 1 2 3 2

说明/提示

In the first test case p=[1,2,3]p = [1, 2, 3] .

It is a correct answer, because:

  • p1=1=a1p_1 = 1 = a_1 , p2=2=b2p_2 = 2 = b_2 , p3=3=c3p_3 = 3 = c_3
  • $p_1 \neq p_2 $ , $p_2 \neq p_3 $ , p3p1p_3 \neq p_1

All possible correct answers to this test case are: [1,2,3][1, 2, 3] , [1,3,2][1, 3, 2] , [2,1,3][2, 1, 3] , [2,3,1][2, 3, 1] , [3,1,2][3, 1, 2] , [3,2,1][3, 2, 1] .

In the second test case p=[1,2,1,2]p = [1, 2, 1, 2] .

In this sequence p1=a1p_1 = a_1 , p2=a2p_2 = a_2 , p3=a3p_3 = a_3 , p4=a4p_4 = a_4 . Also we can see, that no two adjacent elements of the sequence are equal.

In the third test case p=[1,3,4,3,2,4,2]p = [1, 3, 4, 3, 2, 4, 2] .

In this sequence p1=a1p_1 = a_1 , p2=a2p_2 = a_2 , p3=b3p_3 = b_3 , p4=b4p_4 = b_4 , p5=b5p_5 = b_5 , p6=c6p_6 = c_6 , p7=c7p_7 = c_7 . Also we can see, that no two adjacent elements of the sequence are equal.

首页