CF1408B.Arrays Sum

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given a non-decreasing array of non-negative integers a1,a2,,ana_1, a_2, \ldots, a_n . Also you are given a positive integer kk .

You want to find mm non-decreasing arrays of non-negative integers b1,b2,,bmb_1, b_2, \ldots, b_m , such that:

  • The size of bib_i is equal to nn for all 1im1 \leq i \leq m .
  • For all 1jn1 \leq j \leq n , aj=b1,j+b2,j++bm,ja_j = b_{1, j} + b_{2, j} + \ldots + b_{m, j} . In the other word, array aa is the sum of arrays bib_i .
  • The number of different elements in the array bib_i is at most kk for all 1im1 \leq i \leq m .

Find the minimum possible value of mm , or report that there is no possible mm .

输入格式

The first line contains one integer tt ( 1t1001 \leq t \leq 100 ): the number of test cases.

The first line of each test case contains two integers nn , kk ( 1n1001 \leq n \leq 100 , 1kn1 \leq k \leq n ).

The second line contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n ( 0a1a2an1000 \leq a_1 \leq a_2 \leq \ldots \leq a_n \leq 100 , an>0a_n > 0 ).

输出格式

For each test case print a single integer: the minimum possible value of mm . If there is no such mm , print 1-1 .

输入输出样例

  • 输入#1

    6
    4 1
    0 0 0 1
    3 1
    3 3 3
    11 3
    0 1 2 2 3 3 3 4 4 4 4
    5 3
    1 2 3 4 5
    9 4
    2 2 3 5 7 11 13 13 17
    10 7
    0 1 1 2 3 3 4 5 5 6

    输出#1

    -1
    1
    2
    2
    2
    1

说明/提示

In the first test case, there is no possible mm , because all elements of all arrays should be equal to 00 . But in this case, it is impossible to get a4=1a_4 = 1 as the sum of zeros.

In the second test case, we can take b1=[3,3,3]b_1 = [3, 3, 3] . 11 is the smallest possible value of mm .

In the third test case, we can take b1=[0,1,1,1,2,2,2,2,2,2,2]b_1 = [0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2] and b2=[0,0,1,1,1,1,1,2,2,2,2]b_2 = [0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2] . It's easy to see, that ai=b1,i+b2,ia_i = b_{1, i} + b_{2, i} for all ii and the number of different elements in b1b_1 and in b2b_2 is equal to 33 (so it is at most 33 ). It can be proven that 22 is the smallest possible value of mm .

首页